SURVEY & TUTORIAL SERIES

COMPUTER

Hypertext: An Introduction
and Survey

Jeff Conklin

Microelectronics and Computer Technology Corp.

ost modern computer sys-
M tems share a foundation

which is built of directories
containing files. The files consist of text
which is composed of characters. The text
that is stored within this hierarchy is linear.
For much of our current way of doing
business, this linear organization is suffi-
cient. However, for more and more appli-
cations, a linear organization is not
adequate. For example, the documenta-
tion of a computer program* is usually
either squeezed into the margins of the
program, in which case it is generally too
terse to be useful, or it is interleaved with
the text of the program, a practice which
breaks up the flow of both program and
documentation.

As workstations grow cheaper, more
powerful, and more available, new possi-
bilities emerge for extending the tradi-
tional notion of ‘‘flat”’ text files by
allowing more complex organizations of
the material. Mechanisms are being
devised which allow direct machine-
supported references from one textual
chunk to another; new interfaces provide
the user with the ability to interact directly
with these chunks and to establish new
relationships between them. These exten-
sions of the traditional text fall under the
general category of hypertext (also known
as nonlinear text). Ted Nelson, one of the

*Documentation is the uncxecutable English text
which explains the logic of the program which it
accompanies.,

September 1987

Hypertext systems
feature machine-
supported links—both
within and between
documents—that open
exciling new
possibilities for using
the computer as a
communication and
thinking tool.

pioneers of hypertext, once defined it as **a
combination of natural language text with
the computer’s capacity for interactive
branching, or dynamic display . . . of a
nonlinear text . . . which cannot be printed
conveniently on a conventional page.”’'
This article is a survey of existing hyper-
text systems, their applications, and their
design. It is both an introduction to the
world of hypertext and, at a deeper cut, a
survey of some of the most important

0018-9162/87/0900-0017501.00 21987 IEEE

design issues that go into fashioning a
hypertext environment.

The concept of hypertext is quite sim-
ple: Windows on the screen are associated
with objects in a database, and links are
provided between these objects, both
graphically (as labelled tokens) and in the
database (as pointers). (See Figure 1.)

But this simple idea is creating much
excitement. Several universities have
created laboratories for research on hyper-
text, many articles have been written about
the concept just within the last year, and
the Smithsonian Institute has created a
demonstration laboratory to develop and
display hypertext technologies. What is all
the fuss about? Why are some people will-
ing to make extravagant claims for hyper-
text, calling it *‘idea processing’’ and ‘‘the
basis for global scientific literature’?

In this article I will attempt to get at the
essence of hypertext. I will discuss its
advantages and disadvantages. I will show
that this new technology opens some very
exciting possibilities, particularly for new
uses of the computer as a communication
and thinking tool. However, the reader
who has not used hypertext should expect
that at best he will gain a perception of
hypertext as a collection of interesting fea-
tures. Just as a description of electronic
spreadsheets will not get across the real ele-
gance of that tool, this article can only hint
at the potentials of hypertext. In fact, one
must work in current hypertext environ-
ments for a while for the collection of fea-

17

Display screen

Loy
Hypertext database

Figure 1. The correspondence between windows and links in the display, and nodes
and links in the database. In this example, each node in the hypertext database is
dispiayed in a separate window on the screen when requested. The link named “‘b”’
in window A has been activated by a pointing device, causing a new window named
“B’’ to be created on the screen and filled with the text from node B in the data-
base. (Generally, links can have names that are different from the name of the

node they point to.)

tures to coalesce into a useful tool.

One problem with identifying the essen-
tial aspects of hypertext is that the term
“hypertext’” has been used quite loosely in
the past 20 years for many different collec-
tions of features. Such tools as window
systems, electronic mail, and telecon-
ferencing share features with hypertext.
This article focuses on machine-supported
links (both within and between docu-

18

ments) as the essential feature of hypertext
systems and treats other aspects as exten-
sions of this basic concept. * It is this link-
ing capability which allows a nonlinear
organization of text. An additional feature

*While this article seeks to establish the criterion of
machine-supported links as the primary criterion of
hypertext, thisis by no means an accepted definition.
Therefore I will also review and discuss some systems
which have a weaker notion of links.

that is common to many hypertext systems
is the heavy use of windows that have a
one-to-one correspondence with nodes in
the database. I consider this feature to be

of secondary importance,
One way to delimit hypertext is to point

“out whatitis not. Briefly, several systems

have some of the attributes of hypertext
but do not qualify. Window systems fall
into this category; while window systems
do have some of the interface functional-
ity, and therefore some of the “*feel” of
hypertext, window systems have no single
underlying database, and therefore lack
the database aspect of hypertext. File sys-
tems also do not qualify as hypertext; one
could claim that a file system is a database,
and that one moves among nodes (files) by
simply invoking an editor with their
names. However, to qualify as hypertext,
a system must use a more sophisticated
notion of links and must provide more
machine support for its Jinks than merely
typing file names after a text editor
prompt. Similarly, most outline proces-
sors (such as ThinkTank) do not qualify.
They provide little or no support for refer-
ences between outline entries, although
their integrated hierarchical database and
interface do approximate hypertext better
than the other systems that I have men-
tioned. Text formatting systems (such as
Troff and Scribe) do not qualify. They
allow a tree of text fragments in separate
files to be gathered into one large docu-
ment; however, this structure is hierarchi-
cal and provides no interface for on-line
navigation within the (essentially linear)
document. Similarly, database manage-
ment systems (DBMSs) have links of var-
ious kinds (for example, relational and
object-oriented links), but lack the single
coherent interface to the database which
is the hallmark of hypertext.

As videodisc technology comes of age,
there is growing interest in the extension of
hypertext to the more general concept of
hypermedia, in which the elements which
are networked together can be text,
graphics, digitized speech, audio record-
ings, pictures, animation, film clips, and
presumably tastes, odors, and tactile sen-
sations. At this point, little has been done
to explore the design and engineering
issues of these additional modalities,
although many of the high-level design
issues are likely to be shared with hyper-
text. Therefore, this survey will primarily
address the more conservative text-based
systems.

A glimpse of using hypertext. It is use-

COMPUTER

ful to have a sense of the central aspects of
using a hypertext system, particularly if
you have never seen one. Below is a list of
the features of a somewhat idealized
hypertext system. Some existing systems
have more features than these, and some
have fewer or different ones.

® The database is a network of textual
(and perhaps graphical) nodes which can
be thought of as a kind of hyperdocument.

® Windows on the screen correspond to
nodes in the database on a one-to-one
basis, and each has a name or title which
is always displayed in the window. How-
ever, only a small number of nodes are
ever “‘open’’ (as windows) on the screen at
the same time.

e Standard window system operations
are supported: Windows can be reposi-
tioned, resized, closed, and put aside as
small window icons. The position and size
of a window or icon (and perhaps also its
color and shape) are cues to remembering
the contents of the window. Closing a win-
dow causes the window to disappear after
any changes that have been made are saved
to the database node. Clicking with the
mouse on the icon of a closed window
causes the window to open instantly.

e Windows can contain any number of
link icons* which represent pointers to
other nodes in the database. The link icon
contains a short textual field which sug-
gests the contents of the node it points to.
Clicking on a link icon with the mouse
causes the system to find the referenced
node and to immediately open a new win-
dow for it on the screen.

® The user can easily create new nodes
and new links to new nodes (for annota-
tion, comment, elaboration, etc.) or to
existing nodes (for establishing new con-
nections).

® The database can be browsed in three
ways: (1) by following links and opening
windows successively to examine their con-
tents, (2) by searching the network (or part
of it) for some string,** keyword, or
attribute value, and (3) by navigating
around the hyperdocument using a
browser that displays the network graphi-
cally. The user can select whether the
nodes and links display their labels or not.

The browser is an important component

*Note that | am are describing two uses of icons: those
that function as placeholders for windows that have
been temporarily put aside, and those within windows
that represent links to other nodes.

**A string is a series of alphabetic and numeric charac-
ters of any length, for example “‘listening’ or
“G00274."

September 1987

Display screen with browser

Hypertext database

Figure 2, The screen at the top illustrates how a hypertext browser provides a direct
two-dimensional graphic view of the underlying database. In this illustration, the
node ‘°A’ has been selected for full display of its contents. Notice that in the
browser view you can tell not only which nodes are linked fo A but also how the
subnetwork fits into the larger hyperdocument. (Of course, hyperdocuments of any
size cannot be shown all at once in a browser—only portions can be displayed.)

of hypertext systems. As the hyperdocu-
ment grows more complex, it becomes dis-
tressingly easy for a user to become lost or
disoriented. A browser displays some or all
of the hyperdocument as a graph, provid-
ing an important measure of contextual
and spatial cucs to supplement the user’s
model of which nodes he is viewing and
how they are related to each other and their
neighbors in the graph. (See Figure 2.)

Using a browser can be likened to using
visual and tactile cues when looking for a
certain page in a book. Sometimes we
remember the general way the page looked
and about how far it was through the
book, although we don’t recall the page
number or even which keyword terms
would help us find it by using the index or
table of contents. The browser display can
be similarly scanned and scrolled when the

19

user has forgotten all but the appearance
or location of a node.

Hypertext
implementations

The history of hypertext is rich and var-
ied because hypertext is not so much a new
idea as an evolving conception of the pos-
sible applications of the computer. Many
people have contributed to the idea, and
each of them seems to have had something
different in mind. In this section, I will
review these theorists and their ideasin an
effort to present a historical perspective as
well as to sketch some of the hypertext
applications that have been devised to
date. I do not describe the individual sys-
tems and ideas reviewed here in any detail.
For more detailed information, the reader
is invited to consult the literature directly.

One kind of manual hypertext is the tra-
ditional use of 3 X 5 index cards for note
taking. Note cards are often referenced to
each other, as well as arranged hierarchi-
cally (for example, in a shoebox or in
rubber-banded bundles). A particular
advantage of note cards is that their small
size modularizes the notes into small
chunks. The user can easily reorganize a
set of cards when new information sug-
gests a restructuring of the notes. Of
course, a problem with note cards is that
the user can have difficulty finding a spe-
cific card if he has many of them.

Another kind of manual hypertext is the
reference book, exemplified by the dic-
tionary and the encyclopedia. In the sense

that each of these can be viewed as a graph

of textual nodes joined by referential links,
they are very old forms of hypertext. As
one reads an article or definition, explicit
references to related items indicate where
to get more information about those items.
The majority of people’s transactions with
a dictionary make use of the linear (alpha-
betic) ordering of its elements (definitions)
for accessing a desired element. An ency-
clopedia, on the other hand, can best be
used to explore the local nodes in the ““net-
work,’’ once one has found the desired
entry through the alphabetic index.

There are also many documents in
which references to other parts of the
document, or to other documents, consti-
tute a major portion of the work. Both the
Talmud, with its heavy use of annotations
and nested commentary, and Aristotle’s
writings, with their reliance on references
to other sources, are ancient prototypes of

20

hypertextual representation.

But if one insists, as most modern
proponents of hypertext do, that naviga-
tion through hypertextual space must be
computer-supported in order to qualify as
true hypertext, then the field is narrowed
considerably, -and the history likewise
shortened.

In some ways, the people who first
described hypertext—Bush, Engelbart,
Nelson—all had the same vision for hyper-
text as a path to ultimate human-computer
interaction, a vision which is still alive
today among hypertext researchers. Thus
the historical review below stresses the
early development of ideas about hyper-
text as much as the more contemporary
implementation efforts.

Because of the difficulty of precisely
classifying hypertext systems according to
their features, my description will list sys-
tems according to application. There are
four broad application areas for which
hypertext systems have been developed:

® macro literary systems: the study of
technologies to support large on-line
libraries in which interdocument links
are machine-supported (that is, all
publishing, reading, collaboration,
and criticism takes place within the
network);

e problem exploration tools: tools to
support early unstructured thinking
on a problem when many discon-
nected ideas come to mind (for exam-
ple, during early authoring and
outlining, problem solving, and pro-
gramming and design);

® browsing systems: systems similar to
macro literary systems, but smaller in
scale (for teaching, reference, and
public information, where ease of use
is crucial);

o general hypertext technology: general
purpose systems designed to allow
experimentation with a range of
hypertext applications (for reading,
writing, collaboration, etc.)

These categories are somewhat infor-
mal. Often the single application to which
a system has been applied to date deter-
mines which category it is described in.
Bear in mind that some of the systems
mentioned below are full-scale environ-
ments, while others are still only concep-
tual sketches. Some systems have focused
more on the development of the front end

(the user interface aspects), while others
have focused on the database issues of the
back end (the database server). Table 1
identifies various features of the different
hypertext systems which have been imple-
mented.

Macro literary systems. The earliest
visions of hypertext focus on the integra-
tion of colossal volumes of information to
make them readily accessible via a simple
and consistent interface. The whole net-
work publishing system constitutes a
dynamic corpus to be enriched by readers
without defacing the original documents;
thus, the difference between authors and
readers is diminished. The advent of the
computer has brought this vision closer to
reality, but it has also revealed the
monumental problems inherent in this
application area.

Bush’s Memex. Vannevar Bush, Presi-
dent Roosevelt’s Science Advisor, is
credited with first describing hypertext in
his 1945 article ‘‘As We May Think,”?in
which he calls for a major postwar effort
to mechanize the scientific literature sys-
tem. In the article, he introduces a machine
for browsing and making notes in an
extensive on-line text and graphics system.
This memex contained a very large library
as well as personal notes, photographs,
and sketches. It had several screens and a
facility for establishing a labelled link
between any two points in the entire
library. Although the article is remarkably
foresightful, Bush did not anticipate the
power of the digital computer; thus his
memex uses microfilm and photocells to
do its magic. But Bush did anticipate the
information explosion and was motivated
in developing his ideas by the need to sup-
port more natural forms of indexing and
retrieval:

The human mind . . . operates by associa-

tion. Man cannot hope fully to duplicate this

mental process artificially, but he certainly
ought to be able to learn from it. One cannot
hope to equal the speed and flexibility with
which the mind follows an associative trail,
but it should be possible to beat the mind
decisively in regard to the permanence and

clarity of the items resurrected from
storage.’

Bush described the essential feature of
the memex as the ability to tie two items
together. The mechanism is complex, but
clever. The user has two documents that he
wishes to join into a trail he is building,
each document in its own viewer; he taps
in the name of the link, and that name
appears in a code space at the bottom of

COMPUTER

Table 1. Hypertext systems and their features.

Hierarchy Graph- Link Attri- Paths Ver- Proced- Keyword Text Con- Pictures Graphical
based Types butes sions ural or Editor current or Browser
Hypertext Attach- String Multi- Graphics
Systems ment Search users
Boxer Yes Yes Fixed' No! No No Yes Yes Emacs No Yes Yes
CREF Yes Yes Yes No No Bylink No Yes Zmacs No Yes No
Emacs INFO Yes No No No No No No Yes Emacs No No No
IBIS Yes Yes Yes No No Bylink No No A basic Yes No No
text
editor
Intermedia Yes Yes Yes Yes No* No No? Yes Custom Yes Yes Yes
KMS Multiple Yes Fixed No No' Yes Yes Yes Text/ Yes Yes No
graph.
WYSIWYG
Neptune Yes Yes Yes Yes No Yes Yes Yes Smalltalk- Yes Yes Yes
80 editor
NLS/Augment Yes Yes Yes Yes Yes Yes Yes Yes Custom Yes Yes No
NoteCards Multiple Yes Yes Nodes No No Yes Yes Interlisp Yes Yes Yes
Outline Processors Yes No No No No No No Yes Various No No No
PlaneText Unix Yes No No No No No Unix/ SunView Yes Yes Yes
file sys. grep text ed.
Symbolics Yes Yes No No Yes No No Yes None No No No
Document
Examiner
SYNVIEW Yes No No No No No No No line ed./ No No No
Unix
Textnet Multiple Yes Yes Yes Yes No No Keyword Any No No No
Hyperties No Yes No No No No No No? A basic No Yes No
text editor
WE Yes Yes No Fixed No* No? No? No Smalltalk- No? Yes Yes
80 editor
Xanadu No Yes Yes Yes Yes Yes No No Any No Yes No
Z0OG Yes No No No No No Yes Full text Spec. Pur. Yes No No

! Can be user programmed.
? Planned for next version.

In this table, each column represents one possible feature or ability that a hypertext system can provide. The negative or affirmative entries in the
table indicate whether the corresponding hypertext system meets the standard criteria for a specified feature. These criteria are listed below.

Hierarchy: Is there specific support for hierarchical structures?

Graph-based: Does the system support nonhierarchical (cross-reference) links?

Link types: Can links have types?

Attributes: Can user-designated attribute/value pairs be associated with nodes or links?

Paths: Can many links be strung together into a single persistent object?

Versions: Can nodes or links have more than a single version?

Procedural attachment: Can arbitrary executable procedures be attached to events (such as mousing) at nodes or links?
String search: Can the hyperdocument be searched for strings (including keywords)?

Text editor: What editor is used to create and modify the contents of nodes?

Concurrent multiusers: Can several users edit the hyperdocument at the same time?

Pictures or graphics: Is some form of pictorial or graphical information supported in addition to text?
Graphics browser: Is there a browser which graphically presents the nodes and links in the hyperdocument?

September 1987 21

Figure 3. Engelbart at the NLS/Augment workstation. Note the chord key set
under Engelbart’s left hand. The chord key set is optional for Augment. It is a
remarkable accelerator for character-driven commands and mouse-select screen

operands.

each viewer; out of view, the code space is
also filled with a photocell-readable dot
code that names the other document and
the current position in that document.
Thereafter, when one of these items is in
view, the other can be instantly recalled
merely by tapping a button below the cor-
responding code space. Bush admitted that
many technological breakthroughs would
be needed to make his memex practical,
but he felt that it was a technological
achievement worthy of major expenditure.

Engelbart’s NLS/Augment. Just less
than two decades later Douglas Engelbart,
at Stanford Research Institute, was
influenced by Bush’s ideas. In 1963, Engel-
bart wrote ‘‘A Conceptual Framework for
the Augmentation of Man’s Intellect.’”’
Engelbart envisioned that computers
would usher in anew stage of humanevo-
lution, characterized by ‘‘automated
external symbol manipulation’’:

22

In this stage, the symbols with which the
human represents the concepts he is manip-
ulating can be arranged before his eyes,
moved, stored, recalled, operated upon
according to extremely complex rules—all in
very rapid response to a minimum amount of
information supplied by the human, by
means of special cooperative technological
devices. In the limit of what we might now
imagine, this could be a computer, with
which individuals could communicate rapidly
and easily, coupled to a three-dimensional
color display with which extremely sophisti-
cated images could be constructed . . 2

His proposed system, H-LAM/T
(Human using Language, Artifacts, and
Methodology, in which he is Trained),
included the human user as an essential ele-
ment: The user and the computer were
dynamically changing components in a
symbiosis which had the effect of
“‘amplifying’’ the native intelligence of the
user. This is still a common vision among
developers of hypertext systems.

Five years later, in 1968, Engelbart’s

ideas about augmentation had become
more specific, and had been implemented
as NLS (oN Line System) by the Augmen-
ted Human Intellect Research Center at
SRI. NLS was designed as an experimen-
tal tool on which the research group devel-
oped a system that would be adequate to
all of their work needs, by

placing in computer store all of our specifi-
cations, plans, designs, programs, documen-
tation, reports, memos, bibliography and
reference notes, etc., and doing all of our
scratch work, planning, designing, debug-
ging, etc., and a good deal of our intercom-
munication, via the consoles.”

These consoles were very sophisticated
by the standards of the day and included
television images and a variety of input
devices, including one of Engelbart’s best
known inventions, the mouse. *

Files in NLS were structured into a hier-
archy of segments** called statements,
each of which bore an identifier of its level
within the file. For example, a document
might have statements ““1,”” “‘1a,”” “‘1al,”
““la2,”’ ““lb,”’ etc., though these identi-
fiers did not need to be displayed. Any
number of reference links could be estab-
lished between statements within files and
between files. Note that this is a structure
which is primarily hierarchical, but which
allows nonhierarchical links as well. The
importance of supporting both kinds of
structures is a point to which I will return
later. The system provided several ways to
traverse the statements in files.

NLS, like other early hypertext systems,
emphasized three aspects: a database of
nonlinear text, view filters which selected
information from this database, and views
which structured the display of this infor-
mation for the terminal. The availability
of workstations with high resolution dis-
plays has shifted the emphasis to more
graphical depictions of nodes, links, and
networks, such as using one window for
each node.

NLS provided viewing filters for the file
structure: One could clip the level (depth)
of hierarchy displayed, truncate the num-
ber of items displayed at any level, and
write customized filters (in a “‘high-level
content analysis language’’) that displayed
only statements having the specified con-
tent. NLS also introduced the concept of

*Engelbart also introduced a five-key handset—a one-
handed keyboard. The operator enters alphanumeric
text by ‘‘chording’’ the five keys. Although this
method is slower than two-handed typing, it has a con-
siderable advantage for short commands when used
with a mouse in the other hand.

**Segments were limited to 3000 characters in tength.

COMPUTER

multiperson distributed conferenc-
ing/editing.

NLS has evolved over the years. It is
now called Augment (or NLS/Augment)
and is marketed as a commercial network
system by McDonnell Douglas. In
developing NLS, the emphasis has been on
creating a consistent environment for
““knowledge workers’’ (that is, office
automation for software engineers). The
system now includes many forms of WINDOW-1: IN JOHN'S MAIL FILE
computer-supported communication, |
both asynchronous (email with links to all =
documents, journaling of ideas and
exchanges, bulletin boards, etc.) and syn-
chronous (several terminals sharing the
same display, teleconferencing, etc.). It

Journal Document o
g juCP
BASE Jump (to) Link ! 0K:

IHDOU 3 IN BQCUHEET B, OF USER X

. RUGHENT' s Addressing and Lmks.
described in (RBE-6.1%6 ebtzgm)..

[JUMP NAHE: CLICK ON "Ref-6" IN H"3I
CLICK IN WINDOW-4 BELOW: RESULT IN W-4.1
Ref-6: “Authorship Provisions in
AUGMENT," Douglas C.Engelbart, COMPCON
"84 Digest, ..., COMPCON Conference,

John, we should consider some new
viewspecs for the list of

{0AD,2258,7c :ebtzgm}, . Frank.

includes facilities for document produc-
tion and control, organizational and pro-
ject information management, and
software engineering. (See Figures 3 and
4)

Nelson’s Xanadu Project. During
Engelbart’s development of Augment,
another hypertext visionary, Ted Nelson,
was developing his own ideas about aug-
mentation, but with an emphasis on creat-
ing a unified literary environment on a
global scale. Nelson coined the term
“hypertext.’* His thinking and writing are
the most extravagant of any of the early
workers. He named his hypertext system
Xanadu, after the *‘magic place of literary
memory’’ in Samuel Taylor Coleridge’s
poem ‘‘Kubla Khan.”" In Xanadu, storage
space is saved by the heavy use of links.
Only the original document and the
changes made to it are saved. The system
easily reconstructs previous versions of
documents. Nelson describes his objec-
tives as follows:

Under guiding ideas which are not technical

but literary, we are implementing a system for

storage and retrieval of linked and window-
ing text. The document, our fundamental
unit, can have windows to any other docu-
ments. The evolving corpus is continually
expandable without fundamental change.

New links and windows can continually add

new access pathways to old material. Fast

proprietary algorithms render the extreme

data fragmentation tolerable in the planned
. g £
back-end service facility.’

The long range goal of the Xanadu pro-
ject has been facilitating the revolutionary
process of placing the entire world’s liter-
ary corpus on line. In fact, Xanadu’s
design makes a strong separation between
the user interface and the database server,
with most of the emphasis placed on the
latter. In particular, great care has been
taken that copyright protection is main-

September 1987

IR I Alcan Francisco, (0AD,2258,)

["JurP LINK" RESULTS BELOM,
INDOW-5!

7C WINDOW UIEWS
7C1 STRUCTURE CUTOFF. Show only
7C2 LEVEL CLIPPING., For the
7¢3 STATEMENT TRUNCATION. For
7¢4 INTER-STATEMENT SEPARATION.
75 (Note! The foregoing view
7C6 STATEMENT NUMBERS AND NAMES.
2¢7 FROZEN STATEMENTS. A worker
708 USER-SPECIFIED CONTENT

6A There is a consistent set of
6B EXPLICIT STATEHENT ADDRESSES
6C MARKERS

6D RELATIVE-ADDRESS EXTENSIONS
6E EMBEDDED CITATION LINKS

6F TEXT AND CONTENT ADDRESSING

Figure 4. Augment display showing five windows. Window 1 (W-1) has a passage
as if embedded in a message, showing a link to Branch 7¢ of Document 2250 in the
OAD Journal. A ViewSpec (‘‘ebtzgm’’) provides the following specifications: tar-
get level plus one, truncate to one line per statement, no blank lines between state-
ments, show only that branch (e.g., not Branch 7d), and turn on Location
Numbers. Window 2 (W-2) shows the view obtained with a jump link command.
To perform a jump link command, the operator clicks on the link in W-1, then
moves the cursor into W-2 for the final click. The very top-left system message
announces that the desired Journal Item has been accessed, and the cluster at the
top left of the screen verifies that the view is clipped to three levels and the state-
ments truncated to one line each. Window 3 (W-3) shows an indirect link that
specifies the linkage path. In effect, this link says ‘‘go to the statement in the file
named ‘Ref-6,’ follow the link found there to its target file, and in that file find
Location Number 6.’ Note that the same ViewSpec is specified here as for the link
in W-1. Window 4 (W-d) identifies Ref-6 and provides its general reference source
as the reference section at the end of the document; a user can jump from the link
citation in W-3 to see this statement by using the jump name command. To per-
form this command, he clicks on ‘*‘Ref-6"" in W-3 then clicks on W-4. Window 5
(W-5) shows a view in the OAD-Journal Item 2250. The user can obtain this view
by performing a jump link command on the indirect link of W-3. To perform this
command, the user clicks on the indirect link of W-3 and then clicks in W-5.

6 ADDRESSING THE HORHIHG HﬂTERIaLS

tainable, and that a system for the elec-
tronic accounting and distribution of
royalties is in place. Nelson predicts that
the advent of on-line libraries will create
a whole new market for the organization
and indexing of this immense information
store.

The back end of the Xanadu system has
been implemented in Unix and is available
in several forms, including as an on-line
service (much like Engelbart’s Augment).
A crude front end for the Xanadu system
is also available which runs on Sun work-
stations.

23

IN ITEM 2258 OF OAD JOURNAL,
AFTER JUMP ON INDIRECT LINK OF WINDOW 3

Trigg’s Textnet. Randall Trigg wrote
the first and to date the only PhD thesis on
hypertext. In his thesis, he describes his
Textnet system as supporting nonlinear
text—text in which documents are
organized as ‘‘primitive pieces of text con-
nected with typed links to form a network
similar in many ways to a semantic net.”’
The thesis focuses on specific link types
that support literary criticism,

In the tradition of the field, Trigg’s sys-
tem is just a first step in the direction of his
vision:

In our view, the logical and inevitable result
[of the computer revolution] will be the trans-
fer of all such [text handling] activities to the
computer, transforming communication
within the scientific community. All paper
writing, critiquing, and refereeing will be per-
formed on line. Rather than having to track
down little-known proceedings, journals or
unpublished technical reports from distant
universities, users will find them stored in one
large distributed computerized national
paper network. New papers will be written
using the network, often collaborated on by
multiple authors, and submitted to on-line
electronic journals.®

Textnet implements two basic types of
nodes: those which have textual content
(chunks) and those which hierarchically
organize other nodes (focs, for ‘“‘table of
contents’’). Thus Textnet supports both
hierarchical trees (via the toc nodes) and
nonhierarchical graphs (via the typed
links).

Trigg further proposes a specific tax-
onomy of link types for use by collabora-
tors and critics in Textnet. He argues that
there is generally a specific set of types of
comments, and that there is a link type for
each comment. For example, there are
refutation and support links, and, more
specifically, there are links to say that a
point is irrelevant (‘‘Pt-irrelevant’’), that
data cited is inadequate (‘‘D-
inadequate’”), or that the style is rambling
(*‘S-rambling”’). Trigg describes over 80
such link types and argues that the disad-
vantage of having a limited set of link types
is outweighed by the possibility of special-
ized processing on the hyperdocument
afforded by a definite and fixed set of
primitives.

In addition, Textnet supports the defi-
nition of paths—ordered lists of nodes
used to browse linear concatenations of
text and to dump such scans to hard copy.
The path facility relieves the hypertext
reader from having to make an n-way deci-
sion at each link; rather, the reader is
provided a default pathway through the
network (or part of the network), and can
simply read the material in the suggested

24

order as if he were reading a linear
document.

Trigg joined Xerox PARC after com-
pleting his thesis and was one of the prin-
cipal architects of the Xerox NoteCards
system.

Problem exploration systems. These are
highly interactive systems which provide
rapid response to a small collection of
specialized commands for the manipula-
tion of information. They can be thought
of as the early prototypes of electronic
spreadsheets for text and symbolic
processing. One important feature of most
of these tools is a facility for suppressing
detail at various levels specified by the
user. For example, the outline processors
all have single keystroke commands for
turning on and off the display of subsec-
tions of a section, This is an unusual but
natural facility. Hypertext and similar
tools excel at the collection of large
amounts of relatively unstructured infor-
mation. But such collections are of little
use unless adequate mechanisms exist for
filtering, organizing, and browsing. These
are the primary desiderata of these author-
ing/thinking/programming systems.

Issue-Based Information Systems.
Horst Rittel and his students have intro-
duced the notion of Issue-Based Informa-
tion Systems (IBIS)’ to handle systems
analysis in the face of ““wicked problems.”’
Rittel describes wicked problems (as
opposed to ‘‘tame’’ ones) as problems
which cannot be solved by the traditional
systems analysis approach (that is, (1)
define the problem, (2) collect data, (3)
analyze the data, (4) construct a solution).
Wicked problems lack a definitive formu-
lation; their problem space cannot be
mapped out without understanding the
solution elements; in short, the only way
to really understand a wicked problem is
to solve it. Wicked problems have no stop-
ping rule. The design or planning activity
stops for considerations that are external
to the problem (for example, lack of time,
money, or patience). Solutions to wicked
problems are not ‘‘right”” or ““wrong’’;
they just have degrees of sufficiency. Rit-
tel argues that solving wicked problems
requires all those involved to exchange and
argue their many viewpoints, ideas,
values, and concerns. By coming to under-
stand other viewpoints better, each par-

ticipant is able to understand the whole
problem better. This process enables a
common understanding of the major
issues and their implications to emerge.
{BIS is designed to support this
design/planning conversation.

IBIS systems are thus a marriage of (1)
teleconferencing systems which enable
many people to participate in one conver-
sation, and (2) hypertext, which allows
participants to move easily between differ-
ent issues and the different threads of
argument on the same issue. The current
version of Rittel’s IBIS runs on an Apple
PC and is being ported to Sun worksta-
tions.* IBIS has three types of nodes
(issues, positions, and arguments), and
uses nine types of relations to link these
nodes. In a typical application, someone
posts an issue; then that person or others
post positions about that issue; and then
the positions are argued using argument
nodes. Of course, any of the three types of
nodes can be the seed of a new issue. (See
Figure 5.) The current set of relationships
between nodes is: responds-to, questions,
supports, objects-to, specializes, general-
izes, refers-to, and replaces. The research
on IBIS concentrates on ways to summa-
rize and present the issue network, both
for participants and decision makers.

Lowe’s SYNVIEW. David Lowe’s
SYNVIEW system is similar in concept to
Rittel’s IBIS but goes in a different direc-
tion. It proposes that the participants, in
addition to posting their own issues and
arguments, assess previous postings as to
their validity and relevance. The assess-
ment is done by a kind of quantitative vot-
ing. For example, if you think that Joe’s
response to Sam makes a good point but
is not really a direct response to Sam’s
posting, you might gradeit ‘S, 1’’ (where
Sisahigh validity rating and 1 is a low rel-
evance rating). These values are averaged
into the existing values for that posting.
The various displays of the argument
structure show the values for each posting,
allowing readers to focus, if they choose
to, on those argument trails having the
highest voted validity.

Through debates on the accuracy of informa-

tion and on aspects of the structures them-

selves, a large number of users can
cooperatively rank all available items of
information in terms of significance and rel-
evance to each topic. Individual users can

then choose the depth to which they wish to
examine these structures for the purposes al

*A graphical Sun version, called gIBIS, is also being
developed at the MCC/Software Technology
Program.

COMPUTER

hand. The function of this debate is not to
arrive at specific conclusions, but rather to
collect and order the best available evidence
on each topic.”

UNC’s WE. A group at the University
of North Carolina at Chapel Hill has been
developing a writing environment called
WE.? Their research is based on a cogni-
tive model of the communication process
which explains reading as the process of
taking the linear stream of text, compre-
hending it by structuring the concepts hier-
archically, and absorbing it into long-term
memory as a network, Writing is seen as
the reverse process: A loosely structured
network of internal ideas and external
sources is first organized into an appropri-
ate hierarchy (an outline) which is then
““encoded’’ into a linear stream of words,
sentences, etc.

WE is designed to support the upstream
part of writing. It contains two major view
windows, one graphical and one hierarchi-
cal, and many specialized commands for
moving and structuring material (nodes
and links with attached text) between these
two views. Normally a writer will begin by
creating nodes in the graph view, where he
can place them anywhere within the win-
dow. At this stage, little or no structure is
imposed on the conceptual material. The
writer can place nodes in **piles’” if they
seem to be related, or he can place individ-
ual nodes between two piles if they are
somewhat related to both. As some con-
ceptual structure begins to emerge from
this process, the writer can copy nodes into
the hierarchy window, which has special-
ized commands for tree operations. The
hierarchy window has four different dis-
play modes: (1) the tree can be laid out on
its side, with the root node on the left; (2)
the tree can be hung vertically with the root
at the top; (3) child nodes can be displayed
inside their parent node; and, (4) the hier-
archy can be shown in the traditional out-
line view.

WE uses a relational database for the
storage of the nodes and links in the net-
work. The user points with a mouse to
select a node. A third window is an editor
for the material within the currently
selected node. A fourth window on the
screen is for queries to the database. A
fifth window is used to control system
modes and the current working set of
nodes.

WE is designed to be an experimental
platform to study what tools and racilities
will be useful in a writer’s environment.
The real validation of these ideas, as with
so many of the systems described here, will

September 1987

Responds-to

Position 2

Objects-to

Figure 5. A segment of a possible IBIS-style discussion showing the topology of the
IBIS network. Each node contains information on the type of the node, the time
and date of creation, the author, a short phrase describing the content, a longer
body of text with the text of the comment, a list of keywords, and a list of the

incoming and outgoing links.

come with further experiments and
analysis.

Qutline processors. An outline proces-
soris aword processing program which is
specialized for processing outlines, in that
its main commands deal with movement
among, creation of, and modification of
outline entries. In this respect, these pro-
grams commercialize many ideas from
Engelbart’s NLS/Augment. Outline
processors also have at least simple text
editors and do some text formatting, so
that the user can use the same tool to go
from outline to finished document. One of
the most powerful features of outline
processing is the ability to suppress lower
levels of detail in the outline. As with
Engelbart’s NLS/Augment, the user can
view just the top level of the outline, or the
top n levels, or he can ‘‘walk the tree,”

opening up just those entries that are rele-
vant or useful to the idea that he is work-
ing on. In addition, each outline entry can
have a textual body of any length
associated with it, and the user can make
this body appear or disappear with a sin-
gle keystroke. This feature is a real boon
to the writing process, because it allows the
user to have a view of both the immediate
text that he is composing and the global
context for it. It also facilitates rapid
movement between sections, particularly
in large documents, because in outline
mode a remote section is never more than
a few keystrokes away.

Most outline processors are personal
computer programs, and they have done
much to bring some of the concepts under-
lying hypertext into popularity. The first
of these was called ThinkTank. It was
released in 1984. It has since been joined.

25

by a host of others, with names like Max-
Think, Executive Writer/Executive Filer,
Thor, Framework, Kamas, Fact
Cruncher, Freestyle, ldea!, and PC-
Outline.'® There are two very recent addi-
tions to the field: Houdini is an extension
of MaxThink that supports rich nonhier-
archical internode references; and For-
Comment is a word processor that allows
up to 15 people to apply hypertext-like
annotations to a document (and can oper-
ate over a Local Area Network (LAN) in
real time).

Aside from Houdini, most outline
processors do not support inter-entry
references, except by ‘‘cloning’’ the whole
entry and displaying it in the new location.
Only a few others provide windows for
nodes. None of them provide explicit
““mousable’’ link icons. For these reasons,
one could argue whether they qualify as
hypertext as 1 have defined it here. How-
ever, ThinkTank was the first program to
be billed—somewhat pretentiously—as an
‘“‘idea processor,’’ and all of these pro-
grams treat sections of text as first-class
objects and support manipulations that
coincide with the way one manages ideas.
They share these features with hypertext,
and in this sense, they anticipate the
inevitable proliferation of hypertext fea-
tures within the mainstream of computer
applications.

Structured browsing systems. The sys-
tems reviewed in this section were designed
primarily for applications involving large
amounts of existing information or requir-
ing easy access to information. These sys-
tems pose different problems for their
designers. Ease of learning and ease of use
are paramount, and great care goes into
crafting theinterface. On the other hand,
writing (adding new information) is
usually either not allowed to the casual
user or 1s not particularly well supported.

CMU’s ZOG and Knowledge Systems’
KMS. ZOG is a menu-based display sys-
tem developed in 1972 at Carnegie-Mellon
University.'! It consists of a potentially
large database of small (screen-sized) seg-
ments which are viewed one at a time.
Z0OG was developed with the particular
goal of serving a large simultaneous user
community, and thus was designed to
operate on standard terminals on a large
timesharing system. In 1981 two of the
principals on the ZOG Project, Donald
McCracken and Robert Akscyn, started
the company Knowledge Systems and
developed a commercial successor to ZOG

26

called Knowledge Management System
(KMS).

Each segment of the ZOG/KMS data-
base is called a frame. A frame has, by
convention, a one-line title at the top of the
screen, a few lines of text below the title
stating the issue or topic of the frame, a set
of numbered (or lettered) menu items of
text called selections, and a line of stand-
ard ZOG commands called g/obal pads at
the bottom of the screen. (Some of these
commands are: edit, help, back, next,
mark, return, and comment.) The selec-
tions interconnect the frames. When a user
selects an item by typing its number or let-
ter at the terminal keyboard, the selected
frame appears on the screen, replacing the
previous frame. The structure is generally
hierarchical, though cross-referencing
links can be included. In addition, an item
in a frame can be used to activate a
process.

In 1982 ZOG was installed and used as
a computer-based information manage-
ment system on the nuclear-powered air-
craft carrier USS CARL VINSON. This
system is probably the largest and most
thoroughly tested hypertext system in serv-
ice in the field. ZOG has also been used for
more interactive process applications such
as policy analysis, authoring, communica-
tions, and code management. Historically,
however, ZOG made its name more as a
bulletin board/textual database/CAI tool
than as an interactive system. Hence it is
included in this section on browsing. A
drawback of the ZOG/KMS style of view-
ing a single frame at a time is that users
may become disoriented, since no spatial
event corresponds to the process of mov-
ing from frame to frame. In the KMS sys-
tem, this tendency has been offset by
minimizing system response time, so that
frame-to-frame transition takes about half
asecond. The possibility of user disorien-
tation is greatly reduced by the fact that the
user can move very quickly among frames
and thus become reoriented with very lit-
tleeffort. Creating text and graphics is also
fast in KMS.

Emacs INFO Subsystem. The help system
in the widely used text editor, Emacs, is
called INFQO, and is much like ZOG. It has
asimpler set of standard commands, and
its control input is done by single letters or

short commands typed at the keyboard. It
is primarily hierarchical, but a user can
jump to a different place in the hierarchy
by typing in the name of the destination
node. It is used as an on-line help system
in Emacs. INFO has the same potential for
user disorientation which is shared by all
of the systems which display only a single
frame at a time and have no browser.

Shneiderman’s Hyperties. The Univer-
sity of Maryland Hyperties project * has
been developed in two directions—as a
practical and easy-to-learn tool for brows-
ing in instructional databases and as an
experimental platform for studies on the
design of hypertext interfaces. As a prac-
tical tool, it has already seen some use in
the field at a Washington, D.C. museum
exhibit about Austria and the Holocaust.
(See Figure 6.) Designers of the exhibit
emphasized making the system easy and
fun for users who have never used a com-
puter before. As an experimental plat-
form, it has been used in five experimental
studies involving over 220 subjects.'?

In Hyperties the basic units are short
articles (50-1000 words typically), which
are interconnected by any number of links.
Thelinks are highlighted words or phrases
in the article text. The user activates the
links by touching them with a finger (on a
touch-sensitive screen) or using the arrow
keysto jump to them. ** Activating a link
causes the article about that topic to
appear in its own window on the screen.
The system keeps track of the user’s path
through the network of articles, allowing
easy return from exploratory side paths.

In addition to a title and a body of text,
each article has a short (5- to 25-word)
description which the program can display
very quickly. This feature allows the user
an intermediate position between bringing
up the full article and trying to guess from
the link name precisely what the article is
about.

Hyperties runs on the IBM PC.
Recently graphics capabilities have been
added to the system. Current implementa-
tion efforts focus on support for videodisc
images. Also, a browser is being developed

*The ““ties”” in *‘Hyperties’' stands for *‘The Interac-
tive Encyclopedia System.”’

**The Hyperties system uses a different convention
than the mouse to select links. In the Hyperties system,
some link is always selected. When the user pushes one
of the arrow keys, the system responds by selecting the
nearest link in the direction of the arrow. Studies
showed this 10 be a faster and easier technique for
selecting arbitrary highlighted fields on the screen.

COMPUTER

which will provide string search, book-
marks, multiple windows, and user anno-
tation.

Symbolics Document Examiner. The
most advanced of the on-line help systems,
this tool displays the pages from the entire
twelve-volume manual set on the Sym-
bolics Lisp machine screen.'® Certain tex-
tual fields in the document (printed in
bold) are mouse-sensitive. Touching one
of these fields with the mouse causes the
relevant section of the manual to be added
to the current working set of manual
pages. The system allows the reader to
place bookmarks on any topic and to move
swiftly between bookmarked topics. The
protocol for link following is tailored to
browsing in a reference manual or ency-
clopedia. Mousing a link only causes it to
be placed on a list of current topics. Then,
mousing an entry in this list causes that
link to be followed, bringing up the refer-
enced topic in the main viewing window.

The system also supports on-line string
search of preidentified keywords, includ-
ing the search for whole words, leading
substrings, and embedded substrings. The
system is thus well designed for the specific
task of browsing through a technical man-
ual and pursuing several aspects of a tech-
nical question or several levels of detail
simultaneously. The user cannot make any
changes or additions to the manual set
(although it is possible to save personalized
collections of bookmarks).

General hypertext technology. So far |
have discussed hypertext systems that have
particular practical applications. The fol-
lowing systems also have one or more
applications, but their primary purpose is
experimentation with hypertextitselfasa
technology. For example, while
NoteCards has been used for authoring,
programming, personal information man-
agement, project management, legal
research, engineering design, and CAl, its
developers view it primarily as a research
vehicle for the study of hypertext.

Xerox PARC’s NoteCards. Perhaps the
best known version of full hypertext is the
NoteCards system developed at Xerox
PARC." The original motivation in
building NoteCards was to develop an
information analyst’s support tool, one
that would help gather information about
a topic and produce analytic reports. The
designers of Notecards observed that an
information analyst usually follows a
general procedure that consists of a series

September 1987

\ NEXT PAGE

PLACES: AUSTRIA PAGE 10F3
Austria (see map) holds a special place in the history of the Holocaust.
Situated between Eastern and Western Europe, possessing a vibrant and
culturally creative Jewish community on the eve of World War I1,
Austria had also provided the young Adolf Hitler, himself an Austrian
raised near Linz, with important lessons in the political uses of
antisemitism Leading Nazis came from Austria: the names of Adolf
Hitler, Adolf Eichmann, who organized the deportations of the Jews to

the death camps, and Ernst Kaltenbrunner, the head of the

Reich Main Office for Security, 1943-45, readily come to mind. As

Linz - city in northern Austria; childhood home of Adolf Hitler and other
leading Nazis
RETURN TO GYPSIES INDEX

/

Figure 6. The Hyperties Browser enables users to traverse a database of articles and
pictures by selecting from highlighted items embedded in the text of the articles.
The photos show the IBM PC version of Hyperties. The upper node shows a map
of Austria. The lower node shows double-spaced text with link terms highlighted.
Either a touchscreen or jump-arrow keys are used for selection of brief definitions,
full articles, or pictures. The Hyperties Author permits people with only word
processing skills to create and maintain databases. Research versions of Hyperties
run on the Enhanced Graphics Adapter to give more lines and multiple windows
and on the Sun 3 workstation to show two full pages of text at a time., Current
development efforts will enable readers to point at pictures and videodisc images to
retrieve further information.

27

Topic B

Initial T

18-New=35 23:47

1S & Soviet TNF's (1able

AMERICAN AND SOVIET THEATRE NUCLEAPR SYSTEMS,
1879 & 1986 (over 1000 miles range)

Launchers
LI -1

Range War-
(miles) neads

No New Mail at 23:46
Lafite (GV)

Biblioge 4

By end of 1983, 108 |

464 crusse bacams ope
Germany and Great Bri

Searchq

2 R

X P Pgserdon C3 (21371) 38 48 2596 9 SOKT 0.25
FILE DOXES Pershing 11XR(1963)

I X NFBN -~ 108 lboy 1 19v-Cuunl ¥.97
[Characteristics of TNF | soim (1983) -- 380 1500 1 1-563KT .01
|Reacﬂon to Daployment Decision { _

= Ussk . s .

[TNF Dgrarapmms isti ieci In@ -4009 3 150KT 9. ¥s?
Characteristics of TNF Missiles 166 2100 1 i 1
[Aces | S S Ly

FiLE BOXES Bibliography?®)
US TNF Missiles ‘ “Ariny Studies Pershing Test" J

Third-Country Nuciear Forces ‘

e oo [naTO
Cruise miasile depl
LK, 96 in BRD, 48 i Qutline NOT.
Aougnff |
[Rougn Farad
Gover

= FILE BOXES

I:v-ee. Oct. 1

NOTE CARDS

NOTE CARDS

US & Soviet TNF's {table)

Tomahawk Ch.racuristlil

Cruise Guidance Systern J

Cruise Missle Numbars and Locations |

0OLCM Basing in Sicily
G1.CM Basing In UK

GLCM Poses Large Threat to USSR

| Barnaby, “furope Aroused™ |

‘ Barnaby, “Europeans Wanl"J
‘Barnuhy, “War Fighting™ |

[Barnet, “Atlantic Afiance* |

‘ “Belgians, Dutch May Sip" |

|Berlram, “linplications of Theater Nuciear"J

‘ Blacker and Duffy, intarnational Arms \

@ | Blacker and Hussain

v}
<TRIGG>

ACTIVE

[Blechmnnn and Moore, "Nuc!ec-r_l’:r_e-é Zone”

[Bracken, Command and Controt |

ﬁ

LY L. MAKELIYOI INC
T

22¢(NCP.TitleSearch
{NCP.WNF) ‘Nunbers)
Y

NC: Tepic
Browser

[10ats [Javon vue

Figure 7. A typical NoteCards screen with five FileBox cards, two unformatied Text cards, and one Text card formatted as a
table. Links between cards are represented by the boxed text inside the cards. The two menus at the top/middle of the screen
control two different note files. The remainder of the icons on the screen belong to non-NoteCard applications running in the

Xerox Lisp environment.

of steps: (1) reading sources (news reports,
scholarly articles, etc.), (2) collecting clip-
pings and filing them (in actual shoe-
boxes!), and (3) writing analytic reports.
The designers also observed that through-
out the process, the analyst forms analyses
and coneeptual models in his head. The
research goal of the PARC team was to
develop technology to aid the analyst in
forming better conceptual models and
analyses, and to find better expressions of
these models and analyses.

A programmer’s interface makes
NoteCards an open architecture that
allows users to build (in Lisp) new appli-
cations on top of NoteCards. Using this

28

interface, the user can easily customize the
browser. NoteCards allows easy creation
of new types of nodes. Forty or fifty such
specialized node types have been created
to date, including text, video, animation,
graphics, and actions. * The new version
also allows several users to work in the
same Notefile at the same time.

Part of NoteCards’ success is due to the
fact that it was developed on Xerox D-
series Lisp machines, which are powerful
workstations that have high resolution

*Anaction node contains Lisp code which gets evalu-
ated when a link to the node is activated.

screens allowing windows and link and
node icons to be displayed in very high
resolution. (See Figure 7.) Currently
between 50 and 100 users use NoteCards,
many of them outside of Xerox (even
though it is not a supported product).
Several of these users have constructed
very large databases in the system (for
example, 1600 nodes with 3500 links
between them).

Brown University’s Intermedia. One of
the oldest and largest hypertext research
groups exists at Brown University, at the
Institute for Research in Information and
Scholarship (IRIS).'* The Intermedia

COMPUTER

project builds on two decades of work and
three prior generations of hypertext
systems. '

The first system was the Hypertext Edit-
ing System designed by Ted Nelson, Andy
van Dam, and several Brown students for
the IBM 2250 display in 1968, This system
was used by the Houston Manned Space-
craft Center to produce Apollo documen-
tation.

The second system was the File Retrieval
and Editing System (FRESS). FRESS was
a greatly enhanced multiterminal
timesharing version designed by van Dam
and his students. It became available in
1969 and was commercially reim-
plemented by Phillips in the early 1970’s.
FRESS was used in production by
hundreds of faculty and students over
more than a decade. Its users included an
English poetry class that did all of its read-
ing and writing on a communal hypertext
document. Like NLS, FRESS featured
both dynamic hierarchy and bidirectional
reference links, and keyworded links and
nodes. Unlike NLS, it imposed no limits
on the sizes of nodes. On graphics termi-
nals, multiple windows and vector
graphics were supported.

The third project, the Electronic Docu-
ment system, was a hypermedia system
emphasizing color raster graphics and
navigation aids.

As part of Brown's overall effort to
bring graphics-based workstations into
effective use within the classroom, the
Intermedia system is being developed asa
framework for a collection of tools that
allow authors to create links to documents
of various media such as text, timelines,
diagrams and other computer-generated
images, video documentaries, and music.
Two courses, one on cell biology and one
on English literature, have been taught
using the system. Current applications
include InterText, a text processor;
InterDraw, a graphics editor; InterVal, a
timeline editor that allows users interac-
tively to organize information in time and
date sequences; InterSpec, a viewer for
sections of 3D objects; and InterPix, a
scanned-image viewer. Under develop-
ment are a video editor, a 2D animation
editor, and more complex methods for
filtering the corpus and creating and
traversing trails.

Intermedia is being developed both asa
tool for professors to organize and present
their lesson material via computer and as
an interactive medium for students to
study the materials and add their own
annotations and reports.

September 1987

For example, in the English literature course
the first time a student is scarching for back-
ground information on Alexander Pope, he
or she may be interested in Pope’s life and the
political events that prompted his satiric criti-
cism. To pursue this line of thought the stu-
dent might retrieve the biography of Pope
and a timeline summarizing political events
taking place in England during Pope’s life.

Subsequently, the student may want to com-

pare Pope’s use of satire with other later

authors’ satiric techniques. This time the stu-
dent may look at the same information about

Pope but juxtapose it with information about

other satiricists instead of a time line. The

instructor (and other students, if permitted)
could read the student’s paper, examine the
reference material, and add personal anno-
tation links such as comments, criticism, and
suggestions for revision. While revising the
document, the student could see all of the
instructor’s comments and examine the
sources containing the counter-arguments.

Like most of the serious workers on
hypertext, the Intermedia team is espe-
cially concerned with providing the user
with ways of managing the increased com-
plexity of the hypertext environment. For
example, they contend that multiple links
emanating from the same point in a docu-
ment may confuse the reader. Their alter-
native is to have a single link icon in the
material (text or graphics) which can be
quickly queried via the mouse to show the
specific outgoing links, their names, and
their destination nodes.'* They also pro-
pose a construct called a web to implement
context-dependent link display. Every link
belongs to one or more webs and is only
visible when one of those webs is active. To
view documents with the links that belong
to a particular web, a user opens a web and
then opens one or more of its documents.
Although other webs may also reference
the document, only the links which were
made in the current web are displayed. As
a result, the user does not have to sift
through the connections made in many
different contexts.

The Intermedia project is also studying
ways of providing an effective browser for
a network that can include hundreds or
even thousands of nodes. The Intermedia
browser has two kinds of displays: a global
map, which shows the entire hyperdocu-
ment and allows navigation within it; and
a local map, which presents a view cen-
tered on a single document and displaying
its links and nearest neighbors in the web.
In addition, a display can show nodes and
links at several levels of detail. For exam-

ple, it can show whole documents and the
links between them, or each link and its
approximate location within its docu-
ments. (See Figure 8.)

The Intermedia project has a long his-
tory, many participants, and a serious
institutional commitment to long-term
objectives. It conducts creative hypertext
experiments and uses the classroom as a
proving ground. Although this project is
still in its early stages, we can expect it to
contribute significantly to the develop-
ment of effective cooperative work envi-
ronments based on hypertext.

Tektranix Neptune. Tektronix Neptune
is one hypertext system that has been par-
ticularly designed as an open, layered
architecture.'” Neptune strongly separates
the front end, a Smalltalk-based user inter-
face, from the back end, a transaction-
based server called the Hypertext Abstract
Machine (HAM). The HAM is a generic
hypertext model which provides opera-
tions for creating, modifying, and access-
ing nodes and links. It maintains a
complete version history of each node in
the hyperdocument, and provides rapid
access to any version of a hyperdocument.
It provides distributed access over a com-
puter network, synchronization for mul-
tiuser access, a complex network
versioning scheme, and transaction-based
crash recovery.

The interface layer provides several
browsers: A graph browser provides a pic-
torial view of a subgraph of nodes and
links; a document browser supports the
browsing of hierarchical structures of
nodes and links; and a node browser
accesses an individual node in a hyper-
document. Other browsers include arzrib-
ute browsers, version browsers, node
differences browsers, and demon
browsers. (See Figure 9.)

In Neptune, each end of a link has an
offset within its node, whether that node
is textual or graphical. * The link attach-
ment may refer to a particular version of
a node, or it may refer to the current ver-
sion. The HAM provides two mechanisms
that are useful for building application
layers: Nodes and links may have an
unlimited number of attribute/value pairs;
and special high-speed predicates are
included for querying the values of these
pairs in the entire hyperdocument, allow-

*Unlike in most hypertext systems, the destination end
of a Neptune link is an iconic point in the text of the
destination node rather than the whole node.

29

0= Flle Edit

iew fant Intermedia Layout Arcangement Align Daly Customize Print

/docs

/docs/Blo/Micromonas_pusilla/Historical Baékgroun

?items /docs/Big

= Microscopy and Cell Theo!
25 items /docs/Blo/Micromonas_puslila PY = i
1860 1666 Robert Haoks describes cells
=]
1670 1672 - 1682 Nehemiah Grew proposed cell

/docs/Bio/Bio 106.304.2427: Local Tracking Map

Chloraplasq

B ®

as underlying unit of structure,

Nucleus Outline

EEEETA /docs/Bio/Micr

pusilla/micromonas.307.2297

Mitochondria Outling

Micromonas Section

micromonss

Chloroplast Ouline

/docs/Bio/Micromona

/docs/Bio/Micromonas_pusilta/Micromo

Darwin’s On the Origin =

bf Species = (1859)

Contemporary Thought:

Darwin’s On the Origin
of Species by Means of
Natural Selection, or the
Preservation of Favoured
Races in the truggle for Lite,
made several points that had
major Impact on
nineteenth-century thought:

(1) That biological types
aor species do not have a fixed,
static existence but exist in
permament states of change
and flux

(2) that all life,

hininnicalhy ronsidered takes

Micromonas

mm

Plasma Membrane

m Chioroplast

=2 Nucleus

Figure 8. The Intermedia System. This figure illustrates materials from an Intermedia corpus called ‘‘Bio 106: Cell Biology in
Context.”” Three folder windows containing hierarchically organized documents of different types are open in the upper left
side of the display. An InterText document (lower lett side) and an InterVal document (upper right side) are currently open, as
well as an InterDraw document containing a scanned electronmicrograph (lower middle). This image has been linked to a cor-
responding three-dimensional image displayed in an InterSpect document (lower right). The ‘‘lower tracking map’’ (center)
shows the links emanating from the current document. Authors or browsers can manipulate the three-dimensional image, edit
text and graphics, follow links or create links at any time in this environment. (The electronmicrograph of Micromonas was
published in the Journal of Phycology and is reprinted with the permission of the Editor.)

ing higher level applications to define their
own accessing mechanisms on the graph.
The HAM also provides a demon mecha-
nism that invokes arbitrary code when a
specific HAM event occurs.

diSessa’s Boxer. Boxer'® is a highly
interactive programming language specif-
ically tailored to be easy for noncomputer
specialists to learn. Boxer uses a box to
represent a unit of information in the sys-
tem. In Boxer, one box can contain other
boxes, or data such as text or graphics. For

30

example, a program is a box that contains
some boxes that provide input and output
variables, and other boxes that specify
behavior. The system also supports alter-
nate views of some boxes: A box which
specifies a graphics routine can also show
that graphic display.

Since Boxer is a programming language,
it treats cross-reference links in a special
way. Rather than using mousable icons as
links, Boxer uses a specialized box, called
a “‘port,”’ which gives a direct view into the
destination. For example, a port from box

A to box B appears within A as a box
which shows B. But a port is more than
just a view of the destination box, because
the destination box can be changed
through any of the ports which lead to it,
and the changes will be reflected in all of
these ports.

Hierarchy is more naturally expressed in
Boxer than in many of the other hypertext
systems. Boxes are nested within each
other two-dimensionally, and are filtered
toreduce the level of clutter on the screen.
This system of representation has the

COMPUTER

Neptune Documents: Graph Browser|

Neptune Documents: Document Browser|

XISTINI Y

i er inte

N N nte

the Hype

Mulﬁ-ﬁersdn. distrib

i - [1}

nters
lep Documents: REFERENCES|

EEU!I!M?E!E cont mg

Multimedia content

or digitized speech.

The name hypertext is actually a misnomer for many of
Several systems, Including Augment, XanadufXanadd], Nd
NeptunefNeptund and the Hectronic Document Systemf
contents of a node to text. In general the contents of a
can be arbitrary digital data whose Interpretation may In

(May 1986) 379-386.

[Mey86]1 Meyrowitz, N.

T.H. Nelson, Swarthmore, PA., 1981,

man-machine communication.

[KCBB61] Katz, R.H., Chang, E. and Bhateja, R. Version modeling concepts for
computer-aided design databases. Proc. ACM SICMOD ‘86,

Intermedia: The Architecture and Construction of an
Object-Oriented Hypermedia System and Applications Framework.
Proc. ACM OOPSLA ‘86, (Nov 1986) 186-201.

[Nel81 Nelson, T.H. Literary Machines.

[RMNE1] Robertson, G., McCracken, D. and Newell, A. The 20G approach to

International Journal of Man-Machine Studles, 14, 461-488, 1981,

Figure 9. Neptune browsers. Three browsers from Neptune are illustrated. A pictorial view of a network of nodes and links is
shown in the Graph Browser (the upper window). The lower right window and the lower pane of the Document Browser are
viewers for text nodes. Icons representing link attachments are shown embedded within the text in each of the nodes.

advantage of showing a natural hierarchy
of nodes: The windows of lower-level
nodes are nested directly within their par-
ents. In most hypertext systems, no
attempt is made to display the parent-child
relationship once the nodes are opened as
windows.

Pitman’s CREF. The Cross-Referenced
Editing Facility (CREF) is a prototype of
a specialized text and graphics editor
which wag developed originally as a tool
for use in analyzing the transcripts from
psychological experiments (known as pro-
tocols), but which was also used to inves-

September 1987

tigate more general hypertext design
issues.'” Much of the interactive feel of
CREF reflects the style of use and pro-
gramming of the Symbolics Lisp machine,
on which it was built. Chunks of text,
called segments, constitute the nodes in the
system. Segments are arranged in linear
series, and can have keywords and various
kinds of links to other segments. The
notion of a linear set of segments is natu-
ral to the protocol analysis problem, since
the first step with such protocols is to seg-
ment them into the episodes of the exper-
imental session.

CREF organizes segments into collec-

tions, which can be defined implicitly by
a predicate (called an abstract collection)
or explicitly by a list (called a static collec-
tion). At any time, the selected collection
appears as a continuous length of text with
the segment boundaries marked by named
horizontal lines (such as ‘‘Segment 1,
“Segment 2," etc.). This view can be
edited as if it were a single document.
One way of forming an abstract collec-
tion is by selecting segments using a
boolean predicate over keywords. To
extend the power of this keyword facility,
CREF allows the user 1o define a type hier-
archy on the kevwords. For example, if

31

“‘card 105"’ is defined as a type of (i.e., a
child of) “‘card,’” then collections based on
the keyword *“card’’ will also contain seg-
ments which have only ‘‘card 105’ as a
keyword.

CREF supports four kinds of links:
references links cross-reference among
segments; summarizes links impose hier-
archy (a summary is a segment which has
one or more summarizes links to other seg-
ments); supersedes links implement ver-
sioning by copying the superseded segment
and freezing it; and precedes links place a
linear ordering on segments.

Finally, CREF allows multiple analysts
to compose different theories about a pro-
tocol, using the same segmented data.
Each theory imposes its own structure on
the data, and has its own collections, dia-
grams, keywords, and annotations. This
mode of selection is similar to the notion
of contexts or webs used in other systems.

Hypertext on the Macintosh. At least
two programs have been written for the
Apple Macintosh that provide hypertext
facilities: FileVision and Guide.

FileVision is primarily oriented to
graphics nodes and to applications which
can exploit visual indexing. The advertis-
ing for FileVision describes applications
that encourage visual indexing. For exam-
ple, in the database for a travel agency, the
map of aregion may contain icons for the
main cities in that region. The user clicks
on theicon for a city to obtain a display of
amap of that city. The map of the city may
have icons for the major landmarks in the
city. The user clicks on one of these icons
to obtain a display of data about the land-
mark, or perhaps even to obtain a picture
of the landmark itself.

Guide is a more recent program which
is based on an earlier Unix version devel-
oped in England.? It does not provide the
graphics capabilities of FileVision
(graphics are supported but cannot con-

tain links), but it does support textual

hypertext data very well. Guide uses three
kinds of links: replacement links, which
cause the text in the current window to be
completely replaced by the text pointed to
by the link; note links, which display the
destination text in a pop-up window; and
reference links, which bring up a new win-
dow with the destination text. Guide is
now available for PCs as well.

As this article goes to press, there is news
that Apple will soon have its own hyper-
text system, called HyperCards. Hyper-
Cards will be similar in some ways to
Xerox PARC’s NoteCards. It will provide

32

special support for executable links, which
will give it the flavor of a programming
language. HyperCards will be bundled
with the system software in new Macin-
toshes.

MCC’s PlaneText. PlaneText, devel-
oped in the MCC Software Technology
Program (STP), is a very recent addition
to the family of general hypertext sys-
tems. * PlaneText is based on the Unix file
system and the Sun SunView window
manager. Each node is a Unix file. Links
appear as names in curly brackets ({})
whose display can be turned on and off.
Links are implemented as pointers saved
in separate files, so that the linked files
themselves are not changed by creating
hypertext references between them. This
design allows for the smooth integration
of hypertext into the rest of the Unix-based
computational environment, including
such tools as Mail and News. It allows for
the hypertext annotation of standard
source code files. In addition, the Unix file
directory system serves as a ‘ ‘free’” mech-
anism for creating hierarchical structures
among nodes. **

PlaneText supports color graphics
nodes which can be freely linked into a
hyperdocument.

Summary. The systems in this section
were presented in terms of four broad cat-
egories: macro literary systems, problem
exploration systems, structured browsing
systems, and general hypertext technol-
ogy. Table 1 summarizes this discussion
and provides a breakdown of the various
features which current hypertext systems
can include,

One additional area of research cur-
rently is the development of systems which
aid the entire process of design, particu-
larly the informal upstream aspects. Such
systems require the features of hypertext
problem exploration and structured
browsing systems as well as the advanced

*It is perhaps (oo early to say, however, how
PlaneText will rank in the world of hypertext, since it
will only be publicly available from the participant
companies in the MCC/Software Technology Pro-
gram. For more information call Bill Stotesbery at
MCC, (512) 343-0978.

**The use of an existing tree-structuring mechanism
limits any hypertext system to only being able to han-
dle a single hierarchical structure. Single hierarchical
organizations may be too limited for some advanced
applications.

features of the experimental hypertext
technologies. Indeed, this area of investi-
gation may become an important fifth cat-
egory for hypertext systems of the future.

The history of hypertext presented here
suggests that the concept and the advan-
tages of hypertext were clear several
decades ago, but that widespread interest
in hypertext was delayed until the support-
ing technology was cheap and readily
available. This suggestion may be mislead-
ing. Many of the “‘elders’’ of the field feel
that something else has changed as well.
They feel that today computer users eas-
ily accept the role of the computer as a tool
for processing ideas, words, and symbols
(in addition to numbers and mere data),
and as a vehicle of interhuman communi-
cation. Those theorists who gave presen-
tations of their hypertext systems 20 years
ago, using expensive state of the art hard-
ware, report that the computer science
community showed little interest. This
lack of interest seemed to stem as much
from a lack of understanding of the basic
concepts of hypertext as from a lack of
hardware resources.

If this is so, then the recent upsurge in
interest in hypertext may signal that the
computer community is now ready to con-
sider its technology as much a tool for
communication and augmenting the
human intellect as for analysis and infor-
mation processing. Hypertext is certainly
a large step in that direction.

The Essence of
Hypertext

It is tempting to describe the essence of
hypertext as its ability to perform high-
speed, branching transactions on textual
chunks. But this is a little like describing
the essence of a great meal by listing its
ingredients. Perhaps a better description
would focus on hypertext as a computer-
based medium for thinking and commu-
nication. :

The thinking process does not build new
ideas one at a time, starting with nothing
and turning out each idea as a finished
pearl. Thinking seems rather to proceed on
several fronts at one, developing and
rejecting ideas at different levels and on
different points in parallel, each idea
depending on and contributing to the
others.

The recording and communication of
such entwined lines of thought is challeng-
ing because communication is in practice

COMPUTER

a serial process and is, in any case, limited
by the bandwidth of human linguistic
processing. Spoken communication of
parallel themes must mark items with
stresses, pauses, and intonations which the
listener must remember as the speaker
develops other lines of argument. Graphi-
cal forms can use lists, figures, and tables
to present ideas in a less than strictly lin-
ear form. These visual props allow the
reader/viewer to monitor the items which
he must understand together. One of the
challenges of good writing, especially good
technical writing, is to present several par-
allel lines of a story or an argument in a
way that weaves them together coherently.

Traditional flat text binds us to writing
and reading paragraphs in a mostly linear
succession. There are tricks for signalling
branching in the flow of thought when
necessary: Parenthetical comments, foot-
notes, intersectional references (such as
‘‘see Chapter 4’"), bibliographic refer-
ences, and sidebars all allow the author to
say “*hereis arelated thought, in case you
are interested.”’ There are also many rhe-
torical devices for indicating that ideas
belong together as a set but are being
presented in linear sequence. But these are
rough tools at best, and often do not pro-
vide the degree of precision or the speed
and convenience of access that we would
like.

Hypertext allows and even encourages
the writer to make such references, and
allows the readers to make their own deci-
sions about which links to follow and in
what order. In this sense, hypertext eases
the restrictions on the thinker and writer.
It does not force a strict decision about
whether any given idea is either within the
flow of a paper’s stream of thought or out-
side of it. Hypertext also allows annota-
tions on a text to be saved separately from
the reference document, yet still be tightly
bound to the referent. In this sense, the
*linked-ness’’ of hypertext provides much
of its power: It is the machine processible
links which extend the text beyond the sin-
gle dimension of linear flow.

At the same time, some applications
demonstrate that the ‘‘node-ness’” of
hypertext is also very powerful. Particu-
larly when hypertext is used as a thinking,
writing, or design tool, a natural cor-
respondence can emerge between the
objects in the world and the nodes in the
hypertext database. By taking advantage
of this object-oriented aspect, a hypertext
user can build flexible networks which
model his problem (or solution). In this
application the links are less important

September 1987

than the nodes. The links form the “glue”’
that holds the nodes together, but the
emphasis is on the contents of the nodes.

From a computer science viewpoint, the
essence of hypertext is precisely thatitisa
hybrid that cuts across traditional bound-
aries. Hypertext is a database method,
providing a novel way of directly access-
ing data. This method is quite different
from the traditional use of queries. At the
same time, hypertext is a representation
scheme, a kind of semantic network which
mixes informal textual material with more
formal and mechanized operations and
processes. Finally, hypertext is an inferface
modality that features ““‘control buttons’
(link icons) which can be arbitrarily
embedded within the content material by
the user. These are not separate applica-
tions of hypertext: They are metaphors for
a functionality that is an essential union of
all three.

The power of linking. In the next two
sections of this article, I will explore links
and nodes in more detail as the basic build-
ing blocks of hypertext.

Link following. The most distinguishing
characteristic of hypertext is its machine
support for the tracing of references. But
what qualifies a particular reference-
tracing device as a link? How much effort
is permissible on the part of a user who is
attempting to trace a reference? The
accepted lower limit of referencing sup-
port can be specified as follows: To qualify
as hypertext, a system should require no
more than a couple of keystrokes (or
mouse movements) from the user to follow
asingle link. In other words, the interface
must provide links which act like ‘‘magic
buttons’’ to transport the user quickly and
easily to a new place in the hyper-
document.

Another essential characteristic of
hypertext is the speed with which the sys-
tem responds to referencing requests. Only
the briefest delay should occur (one or two
seconds at most). Much design work goes
into this feature in most systems. One rea-
son for this concern is that the reader often
does not know if he wants to pursue a link
reference until he has had a cursory look
at the referenced node. If making this
judgement takes too long, the user may
become frustrated and not bother with the
hypertext links.

However, not all link traversals can be
instantaneous. Perhaps as important as
rapid response is providing cues to the user
about the possible delay that a given query
or traversal might entail. For example,
some visual feature of the link icon could
indicate whether the destination node is in
memory, on the disk, somewhere else on
the network, or archived off line.

Properties of links. Links can be used
for several functions. These include the
following:

e They can connect a document refer-
ence to the document itself.

. They can connect a comment or anno-
tation to the text about which it is written.

e They can provide organizational
information (for instance, establish the
relationship between two pieces of text or
between a table of contents entry and its
section).

* They can connect two successive
pieces of text, or a piece of text and all of
its immediate successors.

¢ They can connect entries in a table or
figure to longer descriptions, or to other
tables or figures.

Links can have names and types. They
can have arich set of properties. Some sys-
tems allow the display of links to be turned
on and off (that is, removed from the dis-
play so that the document appears as ordi-
nary text).

The introduction of links into a text sys-
tem means that an additional set of
mechanisms must be added for creating
new links, deleting links, * changing link
names or attributes, listing links, etc.

Referential links. There are two
methods for explicitly linking two points
in hypertext—by reference and by organ-
ization. The reference method is a nonhi-
erarchical method. It uses referential links
that connect points or regions in the text.

Referential links are the kind of link that
most clearly distinguishes hypertext. They
generally have two ends, and are usually
directed, although most systems support
“‘backward” movement along the link.
The origination of the link is called the
“link source,”” and usually acts as the
reference. The source can logically be
either a single point or a region of text. At
the other ¢nd, the ““destination” of the link
usually functions as the referent, and can

*Link deletion is problematical. For example, what
should the policy be for nodes which are stranded
when all their links have been deleted? Should they be
placed in “*node limbo'" until the user decides what to
do with them?

33

A

Asl dlksjdf dkf sl delsldfj aslkdfj
sljsad asdlkfj;] fjslkja al;kjd j1

sve vkjnsd; vkluv cvoiew,m k oi
ionolf flkd.

sov vi voinsek voierwd. vienm
sio vimns ivdsli vinoern vi dinv
wor glkr It]l reiube rebier uvrebx
rhkrkb "“lkdslksd djnvuin™ dfoi
sew cv ebnwe iubvi cvubw viu
iuhsdibn denewin niouc dsiub d

indsi iousk dk ds iuwi.

B

Bgh sdkj dlkjs kewoj vodiu od soi
slkeid sdoi sionsl dsiunfl soi dis oi
s soijsdi sdoijsd oids dios oi dsoi
sdoi sdois sdoids dsoijsd doi dsoids
3 3 oiosdj ewos sdoie diciewnzxon
osidoiw soidn.

Ywe we d eoid soinveoiz zxoid di
sdoia asoinv aoidsna oianaois dnoi
soandoia a aoinds soid oid odno
soia acidnacinao o oisdo dcioind
aoinal.

Figure 10. An example of a link with a point source and a region destination. The
source of the link is a token in the text of document A which contains a textual
identifier (‘‘xxxx’’). The identifier may be (1) the name of the destination node (in
this case it would be *‘B""), (2) the name of the link, or (3) an arbitrary string which
is neither the name of the link nor the destination node. The destination of this link
is node B which is a region. The link has an internal name (5327) which is normally

visible to the user.

also be either a point or a region. (See Fig-
ure 10.)

A link point is some icon indicating the
presence of the link. It usually shows the
link’s name and perhaps also its type. Or
it may show the name and/or type of the
destination node. In systems such as Nep-
tune which support links with both point
source and point destinaticn, the icon also
indicates which type of link is indicated. In
somc systems, the display of links can be
suppressed, so that the documents appear
linear.

A link region is a set of contiguous
characters which is displayed as a single
unit. In Figure 10, the link destination is
a link region, namely, an entire node. Fig-

34

ure 10 illustrates the most common form
of hypertext link, in which the sourceis a
point and the destination is a region. This
example typifies many of the link applica-
tions listed above, because it shows how a
chunk of text—a region—is written about
or referenced by some smaller chunk of
text, often a sentence. Since most readers
are accustomed to single point references
to sentences (i.e., footnotes), they have no
problem accepting a link with a point
source. There can be regions in graphics as
well—either bordered regions or collec-
tions of graphic objects in a figure.
Link regions can pose difficult design
problems. They are easiest to implement
as whole nodes, since setting a region off

from its neighboring material within the
same node raiscs a tough implementation
issue—how to display the selected region
to the user. It must be highlighted some-
how, using reverse video, fonts, or color,
but each of these options poses difficulties
in keeping overlapping regions clearly
highlighted. The Intermedia designers pro-
pose to draw a light box around regions
and a darker box around region/region
overlaps, thus showing a single level of
ovcr[apping”; however, this technique is
not effective if there are more than two
overlapping regions.

Another difficulty posed by link regions
is how to show the name of the link. Unlike
alink point, a link region has no obvious
position for a title, unless it is placed
arbitrarily at the beginning or end of the
region.

Link regions can also be difficult to
manipulate. Designers must devise a sys-
tem for copying, moving, modifying, and
deleting the region and the substrings
within it. The movement of regions
involves logistical dilemmas which are not
easy to resolve: For example, when one
moves a major portion of the text in a des-
tination region to someplace else in the
node, should the link destination move
with it or stay with what remains? Also,
designers must make special provisions for
deleting, moving, or copying the defining
end points of a region.

Organizational links. Like reference
links, organizational links establish
explicit links between points in hypertext.
Organizational links differ from referen-
tial links in that they implement hierarchi-
cal information.

Organizational links connect a parent
node with its children and thus form a
strict tree subgraph within the hypertext
network graph. They correspond to the IS-
A (or superconcept) links of semantic net
theory, and thus operate quite differently
than referential links.* For example,
rather than appearing as explicit high-
lighted tokens in each node, organiza-
tional links are often traversed by a
separate mechanism at the node control
level (i.e., special goto-parent, goto-first-
child, and goto-next-sibling commands).
In other cases, there are organizational
nodcs (such as toc nodes in Textnet and
FileBoxes in NoteCards) which record the
organizational structure.

*Note that organizational links are distinct from the
class hierarchy links that would be used (in the object-
oriented programming paradigm) to define types and
subtypes of nodes in the hypertext system,

COMPUTER

Keyword links. In addition to the
explicit linking performed by referential
and organizational links, thereis a kind of
implicit linking that occurs through the use
of keywords. This type of linking is yet to
be fully explored.

One of the chief advantages of text stor-
age on a computer is the ability to search
large and complex documents and sets of
documents for substrings and key-
words.* Naturally, this ability is also a
valuable aspect of hypertext. Indeed, most
users of large hyperdocuments insist on
having some mechanism for scanning their
content, either for selected keywords
(which can apply to nodes, links, or
regions) or for arbitrary embedded strings.

From a functional standpoint, link fol-
lowing and search are similar: Each is a
way to access destination nodes that are of
possible interest. Link following usually
yields a single node, whereas search can
yield many; hence, a keyword is a kind of
implicit computed link. The value of this
insight is that it may allow design of a
hypertext interface which is consistent
across all link-tracing activities.

To tree or not to tree. Some hypertext
systems (for example, Emacs INFO) sup-
port only hierarchical structures, others
(such as Xanadu and Hyperties) provide
no specific support for hierarchical struc-
tures, and others (such as Textnet and
NoteCards) support both kinds of
structures.

One could question just how sufficient
strictly hierarchical structures are, and for
which applications they are sufficient and
for which they are not. On the one hand,
abstraction is a fundamental cognitive
process, and hierarchical structures are the
most natural structures for organizing
levels of abstraction. On the other hand,
cases obviously exist where cross-
hierarchical links are required. Frank
Halasz, one of the developers of
NoteCards, has gathered statistics on the
hyperspace of a single representative
NoteCards user; this person had 1577
nodes (cards) in all, 502 of which were File-
Boxes (hierarchical nodes). Connecting
these nodes were a total of 3460 links, 2521

*There is some controversy over the relative merits of
keyword retrieval as opposed to full text search. On the
one hand, keyword retrieval is only as good as the skill
and thoroughness of the person selecting the key-
words., On the other hand, full text search does not
find all the relevant documents, nor does it always find
only the relevant documents. Its shortcomings are due
in part to the commonness of synonyms in English. In
addition, full text search can be computationally pro-
hibitive in large networks.

September 1987

(73 percent) of which connected FileBoxes
to each other or to individual notecards,
261 (7.5 percent) of which were nonhier-
archical referential links, and the
remainder of which were mail links (used
by the system to tie mail messages to other
nodes). This example, for what it is worth,
suggests that hierarchical structure is very
important in organizing a hypertext net-
work, and that referential links are impor-
tant but less common.

One advantage of a strictly tree-oriented
system is that the command language for
navigation is very simple: From any node,
the most one can do is go to the parent, a
sibling, or a child. This simplicity also
diminishes the disorientation problem,
since a simpler cognitive model of the
information space will suffice.

Of course, the great disadvantage of any
hierarchy is that its structure is a function
of the few specific criteria that were used
in creating it. For example, if one wishes
to investigate what sea-based life forms
have in common with land-based life
forms, one may find that the traditional
classification of life forms into the plant
and animal kingdoms breaks up the infor-
mation in the wrong way. The creator of
a hierarchical organization must anticipate
the most important criteria for later access
to the information. One solution to this
dilemma is to allow the information ele-
ments to be structured into multiple hier-
archies, thus allowing the world to be
‘“sliced up’ into several orthogonal
decompositions. Any hypertext system
which has hierarchy nodes, such as Text-
net (toc nodes) and NoteCards (FileBox
nodes), can perform this operation quite
casily. These are the only systems which
explicitly claim to support multiple hierar-
chies. Indeed, one early user of NoteCards
used the system in doing the research and
writing for a major project paper; he
imposed one organization on the data and
his writings while doing the research, and
then quite a different (yet coexistent)
organization on the same material to pro-
duce his paper. As a generalization, it
seems that engineering-oriented hypertext
users prefer hierarchical organizations,
whereas arts- or humanities-oriented users
prefer cross-referencing organizations.

Extensions to basic links. Certain fea-
tures of the link enable it to be extended in

several ways. Links can connect more than
two nodes to form cluster links. Such clus-
ter links can be useful for referring to
several annotations with a single link, and
for providing specialized organizational
structures among nodes. Indeed, the toc
nodes of Textnet and the FileBoxes of
NoteCards are both forms of cluster links.
One useful way to extend the basic link
is to place attribute/value pairs on links
and to query the network for them. The
Neptune system, for example, has an
architecture that is optimized for this func-
tion. Coupled with specialized routines in
the database interpreter (the HAM), these
attribute lists allow users to customize
links in several ways, including devising
their own type system for links and per-
forming high-speed queries on the types.
It is also possible to perform procedural
attachments on a link so that traversing the
link also performs some user-specified side
effect, such as customizing the appearance
of the destination node. This ability is
provided in Neptune and Boxer.

Hypertext nodes. Although the essence
of hypertext is its machine-supported link-
ing, the nodes contribute significantly to
defining the operations that a hypertext
system can perform. Most users of hyper-
text favor using nodes which express a sin-
gle concept or idea, and are thus much
smaller than traditional files. When nodes
are used in this fashion, hypertext
introduces an intermediate level of
machine support between characters and
files, a level which has the vaguely seman-
tic aspect of being oriented to the expres-
sion of ideas. But this sizing is completely
at the discretion of the hypertext writer,
and the process of determining how to
modularize a document into nodes is an
art, because its impact on the reader is not
well understood.?!

The modularization of ideas. Hypertext
invites the writer to modularize ideas into
units in a way that allows (1) an individual
idea to be referenced elsewhere, and (2)
alternative successors of a unit to be
offered to the reader (for instance, more
detail, an example, bibliographic refer-
ences, or the logical successor). But the
writer must also reckon with the fact that
a hypertext node, unlike a textual para-
graph, tends to be a strict unit which does
not blend seamlessly with its neighbors.
Some hypertext systems (Notecards,
CREF, Boxer, FRES, NLS) allow nodes to
be viewed together as if they were one big
node, and this option is essential for some

35

applications (for example, writing and
reading prose). But the boundaries around
nodes are always discrete and require
sometimes difficult judgements about how
to cleave the subject matter into suitable
chunks.

The process of identifying a semanti-
cally based unit, such as an idea or con-
cept, with a syntactic unit, such as a
paragraph or hypertext node, is not unique
to hypertext. Manuals of style notwith-
standing, traditional text has rather loose
conventions for modularizing text into
paragraphs. This looseness is acceptable
because paragraph boundaries have a rela-
tively minor effect on the flow of the read-
ing. Paragraph boundaries are sometimes
provided just to break up the text and give
the eve a reference point. Thus, decisions
about the distribution of sentences among
paragraphs is not always critical.

Hypertext, on the other hand, can
enforce a rather stern information hiding.
In some systems, the only clue a user has
as to the contents of a destination node is
the name of the link (or the name of the
node, if that is provided instead). The
writer is no longer making all the decisions
about the flow of the text. The reader can
and must constantly decide which links to
pursue. In this sense, hypertext imposes on
both the writer and the reader the need for
more process awareness, since either one
has the option of branching in the flow of
the text. Thus hypertext is best suited for
applications which require these kinds of
judgements anyway, and hypertext merely
offers a way to act directly on these judge-
ments and see the results quickly and
graphically.

Ideas as objects. While difficult to docu-
ment, there is something very compelling
about reifying the expression of ideas into
discrete objects to be linked, moved, and
changed as independent entities. Alan Kay
and Adele Goldberg?® observed of
Smalltalk that it is able to give objects a
perceptual dimension by allocating to
them a rectangular piece of screen real
estate. This feature offers enhanced
retrieval and recognition over computer-
processed flat documents, because to a
much greater degree abstract objects are
directly associated with perceptual
objects—the windows and icons on the
SCreen.

Paragraphs, sections, and chaptersin a
book, viewed through a standard text edi-
tor or word processor, don’t stand out as
first-class entities. This is particularly
apparent when one can view one's docu-

36

ment hierarchically (i.e., as an outline) at
the same time that one adds new sections
and embellishes existing ones. People
don’t think in terms of “‘screenfulls”; they
think in terms of ideas, facts, and evi-
dence. Hypertext, via the notion of nodes
as individual expressions of ideas, provides
a vehicle which respects this way of think-
ing and working.

Typed nodes. Some hypertext systems
sort nodes into different types. These
typed nodes can be extremely useful, par-
ticularly if one is considering giving them
some internal structure, since the types can
be used to differentiate the various struc-
tural forms.

For example, in our research in the
MCC Software Technology Program, we
have been implementing a hypertext inter-
face for a design environment called the
Design Journal. The Design Journal is
intended to provide an active scratchpad
in which the designer can deliberate about
design decisions and rationale, both
individually and in on-line design meet-
ings, and in which he can integrate the
design itself with this less formal kind of
information. For this purpose we have
provided a set of four typed nodes for the
designer to use—notes, goals/constraints,
artifacts, and decisions. Notes are used for
everything from reminders, such as *‘Ask
Bill for advice on Module X,”’ to specific
problems and ideas relating to the design.
Goals/constraints are for the initial
requirements as well as discovered con-
straints within the design. Artifacts are for
the elements of the output: The Design.
And decisions are for capturing the branch
points in the design process, the alterna-
tives considered by the designer, and some
of the rationale for any commitment (how-
ever lentative) that has been made. The
designer captures assumptions in the form
of decisions with only one alternative. Our
prototype of the Design Journal uses color
to distinguish between note types in the
browser, and we have found this to be a
very effective interface.

Hypertext systems that use typed nodes
generally provide a specialized color, size,
or iconic form for each node type. The dis-
tinguishing features help the user differen-
tiate at a glance the broad classes of typed
nodes that he is working with. Systems
such as NoteCards, Intermedia, and IBIS
make extensive use of typed nodes.

Semistructured Nodes. So far 1 have
spoken of the hypertext node as a struc-
tureless “‘blank slate’ into which one
might put a word or a whole document.
For some applications, there is growing
interest in semistructured nodes—typed
nodes which contain labelled fields and
spaces for field values. The purpose of
providing a template for node contents is
to assist the user in being complete and to
assist the computer in processing the
nodes. The less that the content of a node
is undifferentiated natural language (for
example, English) text, the more likely that
the computer can do some kinds of limited
processing and inference on the textual
subchunks. This notion is closely related
to Malone’s notion of semistructured
information systems.”

To continue with the example of the
Design Journal, we have developed a
model for the internal structure of deci-
sions. The model is named ISAAC. It
assumes that there are four major compo-
nents to a design decision:

(1) an issue, including a short name
for the issue and a short paragraph
describing it in general terms;

(2) a set of alternatives, each of which
resolves the issue in a different way,
each having a name and short
description, and each potentially
linked to the design documents or ele-
ments that implement the alternative;
(3) an analysis of the competing alter-
natives, including the specific criteria
being used to evaluate them, the
trade-off analysis among these alter-
natives, and links to any data that the
analysis draws upon; and

(4) a commitment 10 one of the alter-
natives (however tentatively) or to a
vector of preferences over the alter-
natives, and a subjective rating about
the correctness or confidence of this
commitment.

Without getting into the details of the
underlying theory, | merely wish to stress
here that the internal structure of ISAAC
suggests that the author of an ISAAC deci-
sion is engaged in a much more structured
activity than just “*writing down the deci-
sion,’” and the reader is likewise guided by
the regularity of the ISAAC structure.

Of coursg, it may not be clear why we do
not treat each of the elements listed above
as its own typed hypertext node. The rea-
son is that the parts of an ISAAC frame
are much more tightly bound together
than ISAAC frames are bound to each
other. For example, we could not have an

COMPUTER

analysis part without an alternatives part;
yet if we treat them as separate hypertext
nodes, we have failed to build this con-
straint into the structure. The general issue
here is that some information elements
must always occur together, while others
may occur together or not, depending on
how related they are in a given context and
how important it is to present them as a
cluster distinct from “‘surrounding’” infor-
mation elements. This problem is recur-
sive: An element that is atomic at one level
may turn out on closer inspection to con-
tain many components, some of which are
clustered together.

In hypertext this tension presents itself
as the twin notions of semistructured
nodes and composite nodes.

Composite nodes. Another mechanism
for aggregating related information in
hypertext is the composite node. Several
related hypertext nodes are ‘“‘glued”
together and the collection is treated as a
single node, with its own name, types, ver-
sions, etc. Composite nodes are most use-
ful for situations in which the separate
items in a bulleted list or the entries in a
table are distinct nodes but also cohere into
a higher level structure (such as the list or
table). This practice can, however, under-
mine the fundamental association of one
interface object (window) per database
object (node), and thus must be managed
well to avoid complicating the hypertext
idiom unduly.

A composite node facility allows a
group of nodes to be treated as a single
node. The composite node can be moved
and resized, and closes up to a suitable icon
reflecting its contents. The subnodes are
separable and rearrangeable through a
subedit mode. The most flexible means of
displaying a composite node is to use a
constraint language (such as that devel-
oped by Symbolics for Constraint Frames)
which describes the subnodes as panes in
the composite node window and specifies
the interpane relationships as dynamic
constraints on size and configuration.

Composite nodes can be an effective
means of managing the problem of having
a large number of named objects in one’s
environment. Pitman described the prob-
lem this way:

In this sort of system, there is a never-ending
Tension between trying 1o name everything (in
which case, the number of named things can
grow quickly and the set can become quickly
unmanageable) or to name as little as possi-
ble (in which case, things that took a lot of
trouble 1o construct can be hard to retrieve
if one accidentally drops the pointers to
them)."

September 1987

One problem with composite nodes is
that as the member nodes grow and change
the aggregation can become misleading or
incorrect. A user who encounters this
problem is in the same predicament as a
writer who has rewritten a section of a
paper so thoroughly that the section title
is no longer accurate. This ‘‘semantic
drift’’ can be difficult to catch.

Analogy to semantic networks. The idea
of building a directed graph of informal
textual elements is similar to the Al con-
cept of semantic networks. A semantic
network is a knowledge representation
scheme consisting of a directed graph in
which concepts are represented as nodes,
and the relationships between concepts are
represented as the links between them.
What distinguishes a semantic network as
an Al representation scheme is that con-
cepts in the representation are indexed by
their semantic content rather than by some
arbitrary (for example, alphabetical)
ordering. One benefit of semantic net-
works is that they are natural to use, since
related concepts tend to cluster together in
the network. Similarly, an incompletely or
inconsistently defined concept is easy to
spot since a meaningful context is provided
by those neighboring concepts to which it
is already linked.

The analogy to hypertext is straightfor-
ward: Hypertext nodes can be thought of
as representing single concepts or ideas,
internode links as representing the seman-
tic interdependencies among these ideas,
and the process of building a hypertext net-
work as a kind of informal knowledge
engineering. The difference is that Al
knowledge engineers are usually striving to
build representations which can be
mechanically interpreted, whereas the goal
of the hypertext writer is often to capture
aninterwoven collection of ideas without
regard to their machine interpretability.
The work on semantic networks also sug-
gests some natural extensions to hypertext,
such as typed nodes, semistructured nodes
(frames), and inheritance hierarchies of
node and link types.

The advantages and
uses of hypertext

Intertextual references are not new. The

importance of hypertext is simply that
references are machine-supported. Like
hypertext, traditional literature is richly
interlinked and is hierarchically organized.
In traditional literature, the medium of
print for the most part restricts the flow of
reading to follow the flow of linearly
arranged passages. However, the process
of following side links is fundamental even
in the medium of print. In fact, library and
information science consist principally of
the investigation of side links. Anyone
who has done research knows that a con-
siderable portion of that effort lies in
obtaining referenced works, looking up
cross-references, looking up terms in a dic-
tionary or glossary, checking tables and
figures, and making notes on notecards.
Even in simple reading one is constantly
negotiating references to other chapters or
sections (via the table of contents or refer-
ences embedded in the text), index entries,
footnotes, bibliographic references, side-
bars, figures, and tables. Often a text
invites the reader to skip a section if he is
not interested in greater technical detail.

But there are problems with the tradi-
tional methods.

* Most references can’t be traced back-
wards: A reader can not easily find where
a specific book or article is referenced in
a document, nor can the author of a paper
find out who has referenced the paper.

* As the reader winds his way down var-
ious reference trails, he must keep track of
which documents he has visited and which
he is done with.

¢ The reader must squeeze annotations
into the margins or place them in a sepa-
rate document.

¢ Finally, following a referential trail
among paper documents requires substan-
tial physical effort and delays, even if the
reader is working at a well-stocked library.
If the documents are on line, the job is eas-
ier and faster, but no less tedious.

New possibilities for authoring and design.
Hypertext may offer new ways for authors
and designers to work. Authoring is
usually viewed as a word- and sentence-
level activity. Clearly the word processor *

*Actually, the term “*word processor'’ is quite mis-
leading. Most such tools accept input only at the
character level, and manipulate characters, words,
senisnees, and paragraphs with equal facility. So these
tools manipulate units of text, not words. But do they
““process’ these units? *‘Processing’” implies that the
computer performs some additional work, such as
changing the verb form if the subject was changed
from singular to plural, or performing real-time spell-
ing and grammar correction. Since this is not the case,
we really should return to the original term for these
tools: “text editors”".

37

is a good tool for authoring at this level.
However, authoring obviously has much
to do with structuring of ideas, order of
presentation, and conceptual exploration.
Few authors simply sit down and pour out
a finished text, and not all editing is just
“wordsmithing”’ and polishing. In a broad
sense, authoring is the design of a docu-
ment. The unit of this level of authoring is
the idea or concept, and this level of work
can be effectively supported by hypertext,
since the idea can be expressed in a node.
As the writer thinks of new ideas, he can
develop them in their own nodes, and then
link them to existing ideas, or leave them
isolated if it is too early to make such
associations. The specialized refinements
of a hypertext environment assist the
movement from an unstructured network
to the final polished document.

New possibilities for reading and
retrieval. Hypertext may also offer new
possibilities for accessing large or complex
information sources. A linear (nonhyper-
text) document can only be easily read in
the order in which the text flows in the
book. The essential advantage of non-
linear text is the ability to organize text in
different ways depending on differing
viewpoints. Shasha provides the following
description of this advantage:

Suppose you are a tourist interested in visit-
ing museums in a foreign city. You may be
interested in visual arts. You may want to see
museums in your local area. You may only
be interested in inexpensive museums. You
certainly want to make sure the museums you
consider are open when you want to visit
them. Now your guidebook may be arranged
by subject, by name of museum, by location,
and so on. The trouble is: if you are interested
in any arrangement other than the one it uses,
you may have to do a lot of searching. You
are not likely to find all the visual arts
museums in one section of a guidebook that
has been organized by district. You may carry
several guidebooks, each organized by a
criterion you may be interested in. The num-
ber of such guidebooks is a measure of the
need for a nonlinear text system.”'

Another advantage is that it is quite nat-
ural in a hypertext environment to suspend
reading temporarily along one line of
investigation while one looks into some
detail, example, or related topic. Bush
described an appealing scenario in his 1945
article:

The owner of the memex, let us say, is

interested in the origin and properties of the

bow and arrow. Specifically he is studying
why the short Turkish bow was apparently
superior to the English long bow in the skir-
mishes of the Crusades. He has dozens of
possibly pertinent books and articles in his

38

memex. First he runs through an encyclope-
dia, finds an interesting but sketchy article,
leaves it projected. Next, in a history, he finds
another pertinent item, and ties the two
together. Thus he goes, building a trail of
many items. Occasionally he inserts a com-
ment of his own, either linking it into the
main trail or joining it by a side trail to a par-
ticular item. When it becomes evident that the
elastic properties of available materials had
a great deal to do with the bow, he branches
off on a side trail which takes him through
textbooks on elasticity and tables of physical
constants. He inserts a page of longhand
analysis of his own. Thus he builds a [perma-
nent] trail of his interest through the maze of
materials available to him.?

As we have seen, Bush’s notion of the
““trail’’ was a feature of Trigg’s Textnet,®
allowing the hypertext author to establish
a mostly linear path through the docu-
ment(s). The main (default) trail is well
marked, and the casual reader can read the
text in that order without troubling with
the side trails.

Summary. We can summarize the opera-
tional advantages of hypertext as:

® ease of tracing references: machine
support for link tracing means that all
references are equally easy to follow
forward to their referent, or back-
ward to their reference;

® case of creating new references: users
can grow their own networks, or sim-
ply annotate someone else’s docu-
ment with a comment (without
changing the referenced document);

® information structuring: both hierar-
chical and nonhierarchical organiza-
tions can be imposed on unstructured
information; even multiple hierar-
chies can organize the same material;

o global views: browsers provide table-
of-contents style views, supporting
easier restructuring of large or com-
plex documents; global and local
(node or page) views can be mixed
effectively;

® customized documents: text segments
can be threaded together in many
ways, allowing the same document to
serve multiple functions;

modularity of information: since the
same text segment can be referenced
from several places, ideas can be
expressed with less overlap and dupli-
cation;

consistency of information: refer-
ences are embedded in their text, and

if the text is moved, even to another
document, the link information still
provides direct access to the
reference;

® task stacking: the user is supported in
having several paths of inquiry active
and displayed on the screen at the
same time, such that any given path
can be unwound to the original task;

e collaboration: several authors can
collaborate, with the document and
comments about the document being
tightly interwoven (the exploration of
this feature has just begun).

The disadvantages of
hypertext

There are two classes of problems with
hypertext: problems with the current
implementations and problems that seem
to be endemic to hypertext. The problems
in the first class include delays in the dis-
play of referenced material, restrictions on
names and other properties of links, lack
of browsers or deficiencies in browsers,
etc. The following section outlines two
problems that are more challenging than
these implementation shortcomings, and
that may in fact ultimately limit the useful-
ness of hypertext: disorientation and cog-
nitive overhead.

Getting ‘‘lost in space.’’ Along with the
power to organize information much more
complexly comes the problem of having to
know (1) where you are in the network and
(2) how to get to some other place that you
know (or think) exists in the network. I call
this the ‘‘disorientation problem.” Of
course, one also has a disorientation prob-
lem in traditional linear text documents,
but in a linear text, the reader has only two
options: He can search for the desired text
earlier in the text or later in the text.
Hypertext offers more degrees of freedom,
more dimensions in which one can move,
and hence a greater potential for the user
to become lost or disoriented. In a network
of 1000 nodes, information can easily
become hard to find or even forgotten
altogether. (See Figure 11.)

There are two major technological solu-
tions for coping with disorientation—
graphical browsers and query/search
mechanisms. Browsers rely on the
extremely highly developed visuospatial
processing of the human visual system. By
placing nodes and links in a two- or three-
dimensional space, providing them with

COMPUTER

Fani

Intermedia

Logout Arrongement Align

= View

Data

Qi

W

War Graves

B | F

Tennyson's Lit Rel ‘Wordsworth

Bildungsroman

7a}

‘Wolf Cubs Aged_Yictoria

% ,_,é uu,hn_ﬁ| : R Wi
R W"'g RN LB

'S A% .‘{“‘\ ..
. S ‘_~.._ [P H1arsd X \fDtckens_Religion ZCrusoe_alone<
N 2R
NN

NS
3
5N

[\ AN
TATZRGEINES

N T AL

S

.

I, ———I——'i

oy L i H
- Py {14 it}
SwiftGulliver “Tennyson_in_Mem— Swinburne Ellan Ternan

TSRS Y
“\‘W_“W‘gq NS
NEAE e

e £ .
Swinburne Dickens by LaursRossatti _sslf_p

i

L ——
é“'.'_-

AR
%.\‘ié%ﬁf‘“!\}-\;!u\ﬁﬁ

)

NS Y
B/ Pt S

RO RO X 1
NS i
o

'!4 0 3
n"la"" '

AR
Q) BN
=/ VY ZARS
B

N ne'g
W
At

"
Tunmﬁt\ﬂnlim_frnuirc ntleman Kipling_lmpe

‘f"‘v\‘-‘z" %/
X

" / ...I. :
\V Vasd ‘ﬁ _
Ep%:&.‘dh"ﬁ_‘.d@\‘ |E}-">_.l

=

"““:“$:§'a,‘ /] s
S s

S
S

Religion in Enf

3

e o TR T LT S P T .

LA TN

G

A

Figure 11. Tangled web of links. This experimental implementation of a global map in the Intermedia system shows the diffi-
culty of providing users with spatial cues once a linked corpus contains more than a few dozen documents, This global map
only represents about one tenth of the documents in a corpus designed for a survey of English literature course.

properties useful in visual differentiation
(color, size, shape, texture), and maintain-
ing certain similarities to our physical envi-
ronment (for example, no two objects
occupy the same space, things only move
if moved, etc.), browser designers are able
to create quite viable virtual spatial envi-
ronments. Users orient themselves by vis-
ual cues, just as when they are walking or
driving through a familiar city. However,
there is no natural topology for an infor-
mation space, except perhaps that higher
level concepts go at the top or on the left
side, so until one is familiar with a given

September 1987

large hyperdocument, one is by definition
disoriented. In addition, an adequate vir-
tuality is very difficult to maintain for a
large or complex hypertext network. Such
parameters as (1) large numbers of nodes,
(2) large numbers of links, (3) frequent
changes in the network, (4) slow or awk-
ward response 1o uscr control inputs, (5)
insufficient visual differentiation among
nodes and/or links, and (6) nonvisually
oriented users combine 1o make it practi-
cally impossible to abolish the disorienta-
tion problem with a browser alone.

One solution to this dilemma is to apply

standard database search and query tech-
niques to locating the node or nodes which
the user is seeking. This is usually done by
using boolean operations to apply some
combination of keyword search, full string
search, and logical predicates on other
attributes (such as author, time of crea-
tion, type, etc.) of nodes or links. Simi-
larly, one can filter (or ellide) information
so that the user is presented with a manage-
able level of complexity and detail, and can
shift the view or the detail suppression
while navigating through the network.
However, much research remains to be

39

done on effective and standardized
methods for ellision.

The cognitive task scheduling problem.
The other fundamental problem with
using hypertext is that jt is difficult to
become accustomed to the additional men-
tal overhead required to create, name, and
keep track of links. I call this “‘cognitive
overhead.” Suppose you are writing about
X, and a related thought about Y comes to
mind and seems important enough to cap-
ture. Ideally, hypertext allows you to sim-
ply “‘press a button’’ (using some mouse
or keyboard action) and a new, empty
hypertext window pops onto the screen.
You record Y in this new window, then
you press another button, the ¥ window
disappears, and you are in the X window
right where you were when Y occurred to
you.

Unfortunately, the situation is a bit
more complex than this scenario implies.
If Y has just occurred to you, it may still
be hazy and tentative; the smallest inter-
ruption could cause you to lose it. Coming
up with a good word or short phrase to
summarize Y may not be easy. You have
to consider not just what is descriptive but
also what will be suggestive for the reader
when he encounters the link to Y within X.
In addition, you must determine whether
you should name the link to Y'to suggest
the contents of Y orto show Y’srelation-
ship to X. Some systems (for example,
NoteCards) provide that links can have
both a type (such as ‘“idea’’) and a label
(such as “‘subsume 4 in B”’). Coming up
with good names for both can impose even
more load on an author struggling with an
uncertain point. {One way to reduce this
problem is for the authoring system to sup-
port immediate recording of the substance
of the idea, deferring the creation and
labeling of the link and/or the node untit
after the thought has been captured.)

Beyond that, you must also consider if
you have provided sufficient links to Y
before returning to work on X. Perhaps
there are better ways to link Y to the net-
work of thoughts than at the point in X
where Y came to mind,

The problem of cognitive overhead also
occurs in the process of reading hypertext,
which tends to present the reader with a
large number of choices about which links
to follow and which to leave alone. These
choicés engender a certain overhead of
metalevel decision making, an overhead
that is absent when the author has already
made many of these choices for you. At
the moment that you encounter a link,

40

how do you decide if following the side
path is worth the distraction? Does the
label appearing in the link tell you enough
to decide? This dilemma could be called
“informational myopia.”” The problem is
that, even if the system response time is
instantaneous (which it rarely is), you
experience a definite distraction, a ‘‘cog-
nitive loading,”’ when you pause to con-
sider whether to pursue the side path. This
problem can be eased by (I) having the
cross-referenced node appear very rapidly
(which is the approach of KMS), (2)
providing an instantaneous one- to three-
line explanation of the side referencein a
pop-up window (which is the approach of
Intermedia), and (3) having a graphical
browser which shows the local subnetwork
into which the link leads.

These problems are not new with hyper-
text, nor are they mere byproducts of
computer-supported work. People who
think for a living—writers, scientists,
artists, designers, etc.—must contend with
the fact that the brain can create ideas
faster than the hand can write them or the

.mouth can speak them. There is always a

balance between refining the current idea,
returning to a previous idea to refine it,
and attending to any of the vague ‘‘proto-
ideas’’ which are hovering at the edge of
consciousness. Hypertext simply offers a
sufficiently sophisticated ‘‘pencil”’ to
begin to engage the richness, variety, and
interrelatedness of creative thought. This
aspect of hypertext has advantages when
this richness is needed and drawbacks
when it is not.

To summarize, then, the problems with
hypertext are

e disorientation: the tendency to lose

one’s sense of location and direction
in a nonlinear document; and

e cognitive overhead: the additional

effort and concentration necessary 10
maintain several tasks or trails at one
time,

These problems may be at least partially
resolvable through improvements in per-
formance and interface design of hyper-
text systems, and through research on
information filtering techniques.

n this article, I have reviewed exist-
ing hyperteat systems, the opportu-
nities and problems of hypertext, and
some of the top-level design issues of
building hypertext systems. [t has been my
intention to give the reader a clear sense of
what hypertext is, what its strengths and
weaknesses are, and what it can be used

for. But [also intended something more:
that the reader come away from this arti-
cle excited, eager to try using hypertext for
himself, and aware that heis at the begin-
ning of something big, something like the
invention of the wheel, but something that
still has enough rough edges that no one is
really sure that it will fulfill its promise.

To that end, [mention one more book
that might be considered to belong to the
literature on hypertext. Neuromancer™ is
a novel about a time in the distant future
when the ultimate computer interface has
been perfected: One simply plugs onc’s
brain into the machine and experiences the
computer data directly as perceptual enti-
ties. Other computers look like boxes
floating in three-dimensional space, and
passwords appear as various kinds of
doors and locks. The user is completely
immersed in a virtual world, the ‘‘operat-
ing system,’’ and can move around and
take different forms simply by willing it.

This is the ultimate hypertext system.
The basic idea of hypertext, after all, is
that ideas correspond to perceptual
objects, and one manipulates ideas and
their relationships by directly manipulat-
ing windows and icons. Current technol-
ogy limits the representation of these
objects to static boxes on a CRT screen,
but one can easily predict that advances in
animation, color, 3D displays, sound,
etc.—in short, Nelson's hypermedia—will
keep making the display more active and
realistic, the data represented richer and
more detailed, and the input more natural
and direct. Thus, hypertext, far from
being an end in itself, is just a crude first
step toward the time when the computer is
a direct and powerful extension of the
human mind, just as Vannevar Bush envi-
sioned when he introduced his Memex
four decades ago.[]

Acknowledgements

I wish to thank Les Belady, Bill Curtis, Susan
Gerhart, Raymonde Guindon, Eric Gullichsen,
Frank Halasz, Peter Marks, and Andy van Dam
for their thoughtful reading of previous drafts.

References

1 T H. Nelson, “Getting It Out of Our Sys-
tem,”’ fnformation Retrieval: A Critical
Review, G. Schechter, ed., Thompson
Books, Wash., D.C., 1967.

2. V. Bush, ‘“As We May Think,”’ Atlantic
Monthly, July 1945, pp.101-108.

3. D.C. Engelbart, ‘A Conceptual Frame-
work for the Augmentation of Man’s

COMPUTER

R

14.

15.

19.

Intellect,” in Vistas in Information Han-
diing, Vol. 1, Spartan Books, London,
1963.

. D.C. Engelbart and W.K. English, “A

Research Center for Augmenting Human
Intellect,”” AFIPS Conf. Proc., Vol. 33,
Part 1, The Thompson Book Company,
Washington, D.C., 1968.

. T.H. Nelson, ‘‘Replacing the Printed

Word: A Complete Literary System,’” IFIP
Proc., October 1980, pp. 1013-1023.

. R.H. Trigg, A Network-based Approach to

Text Handling for the Online Scientific
Community, PhD. Thesis, University of
Maryland, 1983.

. H. Rittel and M. Webber, “‘Dilemmas in a

General Theory of Planning,”” Policy
Sciences, Vol. 4, 1973.

. D.G. Lowe, ‘‘Cooperative Structuring of

Information: The Representation of
Reasoning and Debate,”” in Int’l. J. of Man-
Machine Studies,”” Vol. 23, 1985, pp.
97-111.

. J.B Smith et al, “WE: A Writing Environ-

ment for Professionals,”” Technical Report
86-025, Department of Computer Science,
University of North Carolina at Chapel
Hill, August 1986.

. W. Hershey, ‘‘Idea Processors,”” BYTE,

June 1985, p. 337.

. D. McCracken and R.M. Akscyn, ‘“Expe-

rience with the ZOG Human-computer
Interface System,’” Int’l J. of Man-Machine
Studies, Vol. 21, 1984, pp. 293-310.

. B. Shneiderman and J. Morariu, ‘““The

Interactive Encyclopedia System (TIES),””’
Department of Computer Science, Univer-
sity of Maryland, College Park, MD 20742,
June 1986.

. J.LH. Walker, ““The Document Examiner,”’

SIGGRAPH Video Review, Edited Compi-
lation from CHI'85: Human Factors in
Compuling System, 1985.

F.G. Halasz, T.P. Moran, and T.H. Trigg,
““‘NoteCards in a Nutshell,”” Proc. of the
ACM Conf. on Human Factors in Comput-
ing Systems, Toronto, Canada, April 1987.
N.L. Garrett, K.E. Smith, and N. Mey-
rowitz, “‘Intermedia: [ssues, Strategies, and
Tactics in the Design of a Hypermedia
Document System,” in Proc. Conf. on
Computer-Supported Cooperative Work,
MCC Software Technology Program, Aus-
tin, Texas, 1986.

. N. Yankelovich, N. Meyrowitz, and A. van

Dam, ‘‘Reading and Writing the Elec-
tronic Book,”” Computer, October 1985,

. N. Delisle and M. Schwartz, ““Neptune: A

Hypertext System for CAD Applications,”’
Proc. of ACM SIGMOD Int’l Conf. on
Management of Data, Washington, D.C.,
May 28-30, 1986, pp. 132-143. (Also avail-
able as SIGMOD Record Vol. 15, No. 2,
June 1986).

. A. diSessa, ““A Principled Design for an

Integrated Computational Environment,”’
Human-Computer Interaction, Vol. 1
Lawrence Erlbaum, 1985, pp. 1-47.
K.M.Pitman, “CREF: An Editing Facility
for Managing Structured Text,”” A.l
Memo No. 829, M.I.T. A.l. Laboratory,
Cambridge, Mass., February 1985.

s

September 1987

20.

21

22

23:

24.

P.J. Brown, “Interactive Documentation,”’
in Software: Practice and Experi-
ence, March 1986, pp. 291-299.

. D. Shasha, ““When Does Non-Linear Text

Help? Expert Database Systems, Proc. of
the First Int’l Conf., April 1986, pp.
109-121.

A. Kay and A. Goldberg, ‘“‘Personal
Dynamic Media,” Computer, March 1977,
pp. 31-41.

T.W. Malone et al, ‘‘Intelligent
Information-Sharing Systems,”” Communi-
cations of the ACM, May 1987, pp.
390-402.

W.Gibson, Neuromancer, Ace Science Fic-
tion, 1984,

A more detailed version of this article,

at the back of the magazine.

including an extended bibliography, is avail-
able from the author. To obtain a copy, cir-
cle number 181 on the Reader Service Card

E. Jeffrey Conklin is a member of the research
staff and GE’s liaison to the Software Technol-
ogy Program in the Microelectronics and Com-
puter Technology Corporation (MCC). His
research centers on constructing information
systems for the capture and use of design
rationale.

Conklin Received his BA from Antioch Col-
lege and his MS and PhD from the University
of Massachusetts at Amherst.

Readers may write to Conklin at MCC Soft-
ware Technology Program, P.O. Box 200195,
Austin, TX 78720; (512) 343-0978.

Copyright © 1987 The Institute of Electrical and Electronics Engineers, Inc.
Reprinted with permission from COMPUTER,
10662 Los Vaqueros Circle, Los Alamitos, CA 90720

