
SURVEY & TUTORIAL SERIES

Hypertext: An Introduction
and Survey

Jeff Conklin

Microelectronics and Computer Technology Corp.

Most modern computer sys-
tems share a foundation
which is built of directories

containing files. The files consist of text
which is composed of characters. The text
that is stored within this hierarchy is linear.
For much of our current way of doing
business, this linear organization is suffi-
cient. However, for more and more appli-
cations, a linear organization is not
adequate. For example, the documenta-
tion of a computer program * is usually
either squeezed into the margins of the
program, in which case it is generally too
terse to be useful, or it is interleaved with
the text of the program, a practice which
breaks up the flow of both program and
documentation.

As workstations grow cheaper, more
powerful, and more available, new possi-
bilities emerge for extending the tradi-
tional notion of "flat" text files by
allowing more complex organizations of
the material. Mechanisms are being
devised which allow direct machine-
supported references from one textual
chunk to another; new interfaces provide
the user with the ability to interact directly
with these chunks and to establish new
relationships between them. These exten-
sions of the traditional text fall under the
general category of hypertext (also known
as nonlinear text). Ted Nelson, one of the

"Documentation is the unexecutable English text
which explains the logic of the program which it
accompanies.

September Tsx?

Hypertext systems
feature machine-

supported links-both
within and between

documents-that open
exciting new

possibilities for using
the computer as a

communication and
thinking tool.

pioneers of hypertext, once defined it as "a
combination of natural language text with
the computer's capacity for interactive
branching, or dynamic display ... of a
nonlinear text ... which cannot be printed
conveniently on a conventional page." I

This article is a survey of existing hyper-
text systems, their applications, and their
design. It is both an introduction to the
world of hypertext and, at a deeper cut, a
survey of some of the most important

0018-9162/87/0900-0017$01.00 <01987IEEE

design issues that go into fashioning a
hypertext environment.

The concept of hypertext is quite sim-
ple: Windows on the screen are associated
with objects in a database, and links are
provided between these objects, both
graphically (as labelled tokens) and in the
database (as pointers). (See Figure l.)

But this simple idea is creating much
excitement. Several universities have
created laboratories for research on hyper-
text, many articles have been written about
the concept just within the last year, and
the Smithsonian Institute has created a
demonstration laboratory to develop and
display hypertext technologies. What is all
the fuss about? Why are some people will-
ing to make extravagant claims for hyper-
text, calling it "idea processing" and "the
basis for global scientific literature"?

In this article I will attempt to get at the
essence of hypertext. I will discuss its
advantages and disadvantages. I will show
that this new technology opens some very
exciting possibilities, particularly for new
uses of the computer as a communication
and thinking tool. However, the reader
who has not used hypertext should expect
that at best he will gain a perception of
hypertext as a collection of interesting fea-
tures. Just as a description of electronic
spreadsheets will not get across the real ele-
gance ofthat tool, this article can only hint
at the potentials of hypertext. In fact. one
must work in current hypertext environ-
ments for a while for the collection of fea-

17

ful to have a sense of the central aspects of
using a hypertext system, particularly if
you have never seen one. Below is a list of
the features of a somewhat idealized
hypertext system. Some existing systems
have more features than these, and some
have fewer or different ones.

• The database is a network of textual
(and perhaps graphical) nodes which can
be thought of as a kind of hyperdocument.

• Windows on the screen correspond to
nodes in the database on a one-to-one
basis, and each has a name or title which
is always displayed in the window. How-
ever, only a small number of nodes are
ever "open" (as windows) on the screen at
the same time.

• Standard window system operations
are supported: Windows can be reposi-
tioned, resized, closed, and put aside as
small window icons. The position and size
of a window or icon (and perhaps also its
color and shape) are cues to remembering
the contents of the window. Closing a win-
dow causes the window to disappear after
any changes that have been made are saved
to the database node. Clicking with the
mouse on the icon of a closed window
causes the window to open instantly.

• Windows can contain any number of
link icons" which represent pointers to
other nodes in the database. The link icon
contains a short textual field which sug-
gests the contents of the node it points to.
Clicking on a link icon with the mouse
causes the system to find the referenced
node and to immediately open a new win-
dow for it on the screen.

• The user can easily create new nodes
and new links to new nodes (for annota-
tion, comment, elaboration, etc.) or to
existing nodes (for establishing new con-
nections).

• The database can be browsed in three
ways: (1) by following links and opening
windows successively to examine their con-
tents, (2) by searching the network (or part
of it) for some string, ** keyword, or
attribute value, and (3) by navigating
around the hyperdocument using a
browser that displays the network graphi-
cally. The user can select whether the
nodes and links display their labels or not.

The browser is an important component

°Note that I am are describing two uses of icons: those
that function as placeholders for windows that have
been temporarily put aside, and those within windows
that represent links to other nodes.

··A string is a series of alphabetic and numeric charac-
ters of any length, for example "listening" or
"000274."

September 1987

Display screen with browser

\
\
\
\
\,,,,

,----
I
I
I
I
I
I
I
I
I
I
L

,,,
\,

\
\
\
\-;----------,,

" I
" I\, I

I
I
I
I
I
I
I

~
Hypertext database

Figure 2. The screen at the top illustrates how a hypertext browser provides a direct
two-dimensional graphic view of the underlying database. In this illustration, the
node "A" has been selected for full display of its contents. Notice that in the
browser view you can tell not only which nodes are linked to A but also how the
subnetwork fits into the larger hyperdocument. (Of course, hyperdocuments of any
size cannot be shown all at once in a browser-only portions can be displayed.)

of hypertext systems. As the hyperdocu-
ment grows more complex, it becomes dis-
tressingly easy for a user to become lost or
disoriented. A browser displays some or all
of the hyperdocument as a graph, provid-
ing an important measure of contextual
and spatial cues to supplement the user's
model of which nodes he is viewing and
how they are related to each other and their
neighbors in the graph. (See Figure 2.)

Using a browser can be likened to using
visual and tactile cues when looking for a
certain page in a book. Sometimes we
remember the general way the page looked
and about how far it was through the
book, although we don't recall the page
number or even which keyword terms
would help us find it by using the index or
table of contents. The browser display can
be similarly scanned and scrolled when the

19

Table 1. Hypertext systems and their features.

Hierarchy Graph- Link Attri- Paths Ver- Proced- Keyword Text Con- Pictures Graphical
based Types butes sions ural or Editor current or Browser

Hypertext Attach- String Multi- Graphics
Systems ment Search users

Boxer Yes Yes Fixed' No' No No Yes Yes Emacs No Yes Yes

CREF Yes Yes Yes No No By link No Yes Zmacs No Yes No

Emacs INFO Yes No No No No No No Yes Emacs No No No

IBIS Yes Yes Yes No No By link No No A basic Yes No No
text
editor

Intermedia Yes Yes Yes Yes No' No No' Yes Custom Yes Yes Yes

KMS Multiple Yes Fixed No No' Yes Yes Yes Text! Yes Yes No
graph.
WYSIWYG

Neptune Yes Yes Yes Yes No Yes Yes Yes Smalltalk- Yes Yes Yes
80 editor

NLS/ Augment Yes Yes Yes Yes Yes Yes Yes Yes Custom Yes Yes No

NoteCards Multiple Yes Yes Nodes No No Yes Yes Interlisp Yes Yes Yes

Outline Processors Yes No No No No No No Yes Various No No No

PlaneText Unix Yes No No No No No Unix/ SunView Yes Yes Yes
file sys. grep text ed.

Symbolics Yes Yes No No Yes No No Yes None No No No
Document
Examiner

SYNVIEW Yes No No No No No No No line.ed.! No No No
Unix

Textnet Multiple Yes Yes Yes Yes No No Keyword Any No No No

Hyperties No Yes No No No No No No' A basic No Yes No
text editor

WE Yes Yes No Fixed No' No' No' No Smalltalk- No' Yes Yes
80 editor

Xanadu No Yes Yes Yes Yes Yes No No Any No Yes No

ZOG Yes No No No No No Yes Full text Spec. Pur. Yes No No

I Can be user programmed.
z Planned for next version.

In this table, each column represents one possible feature or ability that a hypertext system can provide. The negative or affirmative entries in the
table indicate whether the corresponding hypertext system meets the standard criteria for a specified feature. These criteria are listed below.

Hierarchy: Is there specific support for hierarchical structures?
Graph-based: Does the system support nonhierarchical (cross-reference) links?
Link types: Can links have types?
Attributes: Can user-designated attribute/value pairs be associated with nodes or links?
Paths: Can many links be strung together into a single persistent object?
Versions: Can nodes or links have more than a single version?
Procedural attachment: Can arbitrary executable procedures be attached to events (such as mousing) at nodes or links?
String search: Can the hyperdocument be searched for strings (including keywords)?
Text editor: What editor is used to create and modify the contents of nodes?
Concurrent multiusers: Can several users edit the hyperdocument at the same time?
Pictures or graphics: Is some form of pictorial or graphical information supported in addition to text?
Graphics browser: Is there a browser which graphically presents the nodes and links in the hyperdocument?

September 1987 21

multiperson distributed conferenc-
ing/editing.

NLS has evolved over the years. It is
now called Augment (or NLS/ Augment)
and is marketed as a commercial network
system by McDonnell Douglas. In
developing NLS, the emphasis has been on
creating a consistent environment for
"knowledge workers" (that is, office
automation for software engineers). The
system now includes many forms of
computer-supported communication,
both asynchronous (email with links to all
documents, journaling of ideas and
exchanges, bulletin boards, etc.) and syn-
chronous (several terminals sharing the
same display, teleconferencing, etc.). It
includes facilities for document produc-
tion and control, organizational and pro-
ject information management, and
software engineering. (See Figures 3 and
4.)

Nelson's Xanadu Project. During
Engelbart's development of Augment,
another hypertext visionary, Ted Nelson,
was developing his own ideas about aug-
mentation, but with an emphasis on creat-
ing a unified literary environment on a
global scale. Nelson coined the term
"hypertext." His thinking and writing are
the most extravagant of any of the early
workers. He named his hypertext system
Xanadu, after the "magic place of literary
memory" in Samuel Taylor Coleridge's
poem "Kubla Khan." In Xanadu, storage
space is saved by the heavy use of links.
Only the original document and the
changes made to it are saved. The system
easily reconstructs previous versions of
documents. Nelson describes his objec-
tives as follows:

Under guiding ideas which are not technical
but literary, weare implementing a system for
storage and retrieval of linked and window-
ing text. The document, our fundamental
unit, can have windows to any other docu-
ments. The evolving corpus is continually
expandable without fundamental change.
New links and windows can continually add
new access pathways to old material. Fast
proprietary algorithms render the extreme
data fragmentation tolerable in the planned
back-end service facility. 5

The long range goal of the Xanadu pro-
ject has been facilitating the revolutionary
process of placing the entire world's liter-
ary corpus on line. In fact, Xanadu's
design makes a strong separation between
the user interface and the database server,
with most of the emphasis placed on the
latter. In particular, great care has been
taken that copyright protection is main-

September 1987

Figure 4. Augment display showing five windows. Window 1 (W-l) has a passage
as if embedded in a message, showing a link to Branch 7c of Document 2250 in the
OAD Journal. A ViewSpec ("ebtzgm") provides the following specifications: tar-
get level plus one, truncate to one line per statement, no blank lines between state-
ments, show only that branch (e.g., not Branch 7d), and turn on Location
Numbers. Window 2 (W-2) shows the view obtained with a jump link command.
To perform a jump link command, the operator clicks on the link in W-l, then
moves the cursor into W-2 for the final click. The very top-left system message
announces that the desired Journal Item has been accessed, and the cluster at the
top left of the screen verifies that the view is clipped to three levels and the state-
ments truncated to one line each. Window 3 (W-3) shows an indirect link that
specifies the linkage path. In effect, this link says "go to the statement in the file
named 'Ref-6,' follow the link found there to its target file, and in that file find
Location Number 6." Note that the same ViewSpec is specified here as for the link
in W-l. Window 4 (W-4) identifies Ref-6 and provides its general reference source
as the reference section at the end of the document; a user can jump from the link
citation in W-3 to see this statement by using the jump name command. To per-
form this command, he clicks on "Ref-6" in W-3 then clicks on W-4. Window 5
(W-5) shows a view in the OAD-Journal Item 2250. The user can obtain this view
by performing a jump link command on the indirect link of W-3. To perform this
command, the user clicks on the indirect link of W-3 and then clicks in W-S.

tainable, and that a system for the elec-
tronic accounting and distribution of
royalties is in place. Nelson predicts that
the advent of on-line libraries will create
a whole new market for the organization
and indexing of this immense information
store.

The back end of the Xanadu system has
been implemented in Unix and is available
in several forms, induding as an on-line
service (much like Engelbart's Augment).
A crude front end for the Xanadu system
is also available which runs on Sun work-
stations.

23

hand. The function of this debate is not to
arrive at specific conclusions, but rather to
collect and order the best available evidence
on each topic."

UNC's WE. A group at the University
of North Carolina at Chapel Hill has been
developing a writing environment called
WE.9 Their research is based on a cogni-
tive model of the communication process
which explains reading as the process of
taking the linear stream of text, compre-
hending it by structuring the concepts hier-
archically, and absorbing it into long-term
memory as a network. Writing is seen as
the reverse process: A loosely structured
network of internal ideas and external
sources is first organized into an appropri-
ate hierarchy (an outline) which is then
"encoded" into a linear stream of words,
sentences, etc.

WE is designed to support the upstream
part of writing. It contains two major view
windows, one graphical and one hierarchi-
cal, and many specialized commands for
moving and structuring material (nodes
and links with attached text) between these
two views. Normally a writer will begin by
creating nodes in the graph view, where he
can place them anywhere within the win-
dow. At this stage, little or no structure is
imposed on the conceptual material. The
writer can place nodes in "piles" if they
seem to be related, or he can place individ-
ual nodes between two piles if they are
somewhat related to both. As some con-
ceptual structure begins to emerge from
this process, the writer can copy nodes into
the hierarchy window, which has special-
ized commands for tree operations. The
hierarchy window has four different dis-
play modes: (1) the tree can be laid out on
its side, with the root node on the left; (2)
the tree can be hung vertically with the root
at the top; (3) child nodes can be displayed
inside their parent node; and, (4) the hier-
archy can be shown in the traditional out-
line view.

WE uses a relational database for the
storage of the nodes and links in the net-
work. The user points with a mouse to
select a node. A third window is an editor
for the material within the currently
selected node. A fourth window on the
screen is for queries to the database. A
fifth window is used to control system
modes and the current working set of
nodes.

WE is designed to be an experimental
platform to study what tools and facilities
will be useful in a writer's environment.
The real validation of these ideas, as with
so many of the systems described here, will

September 1987

Question

Figure 5. A segment of a possible IBIS-style discussion showing the topology of the
IBIS network. Each node contains information on the type of the node, the time
and date of creation, the author, a short phrase describing the content, a longer
body of text with the text of the comment, a list of keywords, and a list of the
incoming and outgoing links.

come with further experiments and
analysis.

Outline processors. An outline proces-
sor is a word processing program which is
specialized for processing outlines, in that
its main commands deal with movement
among, creation of, and modification of
outline entries. In this respect, these pro-
grams commercialize many ideas from
Engelbart's NLS/ Augment. Outline
processors also have at least simple text
editors and do some text formatting, so
that the user can use the same tool to go
from outline to finished document. One of
the most powerful features of outline
processing is the ability to suppress lower
levels of detail in the outline. As with
Engelbart's NLS/ Augment, the user can
view just the top level of the outline, or the
top n levels, or he can "walk the tree,"

opening up just those entries that are rele-
vant or useful to the idea that he is work-
ing on. In addition, each outline entry can
have a textual body of any length
associated with it, and the user can make
this body appear or disappear with a sin-
gle keystroke. This feature is a real boon
to the writing process, because it allows the
user to have a view of both the immediate
text that he is composing and the global
context for it. It also facilitates rapid
movement between sections, particularly
in large documents, because in outline
mode a remote section is never more than
a few keystrokes away.

Most outline processors are personal
computer programs, and they have done
much to bring some of the concepts under-
lying hypertext into popularity. The first
of these was called ThinkTank. It was
released in 1984. It has since been joined.

25

which will provide string search. book-
marks, multiple windows, and user anno-
tation.

Symbolics Document Examiner. The
most advanced of the on-line help systems,
this tool displays the pages from the entire
twelve-volume manual set on the Syrn-
bolics Lisp machine screen.l ' Certain tex-
tual fields in the document (printed in
bold) are mouse-sensitive. Touching one
of these fields with the mouse causes the
relevant section of the manual to be added
to the current working set of manual
pages. The system allows the reader to
place bookmarks on any topic and to move
swiftly between bookmarked topics. The
protocol for link following is tailored to
browsing in a reference manual or ency-
clopedia. Mousing a link only causes it to
be placed on a list of current topics. Then,
mousing an entry in this list causes that
link to be followed, bringing up the refer-
enced topic in the main viewing window.

The system also supports on-line string
search of preidentified keywords, includ-
ing the search for whole words, leading
substrings. and embedded substrings. The
system is thus well designed for the specific
task of browsing through a technical man-
ual and pursuing several aspects of a tech-
nical question or several levels of detail
simultaneously. The user cannot make any
changes or additions to the manual set
(although it is possible to save personalized
collections of bookmarks).

General hypertext technology. So far I
have discussed hypertext systems that have
particular practical applications. The fol-
lowing systems also have one or more
applications. but their primary purpose is
experimentation with hypertext itself as a
technology. For example, while
NoteCards has been used for authoring,
programming, personal information man-
agement, project management, legal
research, engineering design, and CAI, its
developers view it primarily as a research
vehicle for the study of hypertext.

Xerox PARe's NoteCards. Perhaps the
best known version of full hypertext is the
NoteCards system developed at Xerox
PARC.14 The original motivation in
building NoteCards was to develop an
information analyst's support tool, one
that would help gather information about
a topic and produce analytic reports. The
designers of Notecards observed that an
information analyst usually follows a
general procedure that consists of a series

September 1987

PLACES: AUSTRIA PAGE 10F3

Austria (see map) holds a special place in the history of the Holocaust.

Situated between Eastern and Western Europe, possessing a vibrant and

culturally creative Jewish community on the eve of World War II,

Austria had also provided the young Adolf Hitler, himself an Austrian

raised near Linz, with important lessons in the political uses of

antisemitism Leading Nazis came from Austria: the names of Adolf

Hitler, Adolf Eichmann, who organized the deportations of the Jews to

the death camps, and Ernst Kaltenbrunner, the head of the

Reich Main Office for Security, 1943-45, readily come to mind. As

Linz - city in northern Austria; childhood home of Adolf Hitler and other

leading Nazis

NEXT PAGE RETURN TO GYPSIES INDEX

Figure 6. The Hyperties Browser enables users to traverse a database of articles and
pictures by selecting from highlighted items embedded in the text of the articles.
The photos show the IBM PC version of Hyperties. The upper node shows a map
of Austria. The lower node shows double-spaced text with link terms highlighted.
Either a touchscreen or jump-arrow keys are used for selection of brief definitions,
full articles, or pictures. The Hyperties Author permits people with only word
processing skills to create and maintain databases. Research versions of Hyperties
run on the Enhanced Graphics Adapter to give more lines and multiple windows
and on the Sun 3 workstation to show two full pages of text at a time. Current
development efforts will enable readers to point at pictures and videodisc images to
retrieve further information.

27

project builds on two decades of work and
three prior generations of hypertext
systems. 16

The first system was the Hypertext Edit-
ing System designed by Ted Nelson, Andy
van Dam, and several Brown students for
the IBM 2250 display in 1968.This system
was used by the Houston Manned Space-
craft Center to produce Apollo documen-
tation.

The second system was the File Retrieval
and Editing System (FRESS). FRESS was
a greatly enhanced multiterminal
timesharing version designed by van Dam
and his students. It became available in,
1969 and was commercially reim-
plemented by Phillips in the early 1970's.
FRESS was used in production by
hundreds of faculty and students over
more than a decade. Its users included an
English poetry class that did all of its read-
ing and writing on a communal hypertext
document. Like NLS, FRESS featured
both dynamic hierarchy and bidirectional
reference links, and keyworded links and
nodes. Unlike NLS, it imposed no limits
on the sizes of nodes. On graphics termi-
nals, multiple windows and vector
graphics were supported.

The third project, the Electronic Docu-
ment system, was a hypermedia system
emphasizing color raster graphics and
navigation aids.

As part of Brown's overall effort to
bring graphics-based workstations into
effective use within the classroom, the
Intermedia system is being developed as a
framework for a collection of tools that
allow authors to create links to documents
of various media such as text, timelines,
diagrams and other computer-generated
images, video documentaries, and music.
Two courses, one on cell biology and one
on English literature, have been taught
using the system. Current applications
include InterText, a text processor;
InterDraw, a graphics editor; InterVal, a
time line editor that allows users interac-
tively to organize information in time and
date sequences; InterSpec, a viewer for
sections of 3D objects; and InterPix, a
scanned-image viewer. Under develop-
ment are a video editor, a 2D animation
editor, and more complex methods for
filtering the corpus and creating and
traversing trails.

Intermedia is being developed both as a
tool for professors to organize and present
their lesson material via computer and as
an interactive medium for students to
study the materials and add their own
annotations and reports.

September 1987

For example, in the English literature course
the first time a student is searching for back-
ground information on Alexander Pope, he
or she may be interested in Pope's life and the
political events that prompted his satiric criti-
cism. To pursue this line of thought the stu-
dent might retrieve the biography of Pope
and a timeline summarizing political events
taking place in England during Pope's life.
Subsequently, the student may want to com-
pare Pope's use of satire with other later
authors' satiric techniques. This time the stu-
dent may look at the same information about
Pope but juxtapose it with information about
other satiricists instead of a time line. The
instructor (and other students, if permitted)
could read the student's paper, examine the
reference material, and add personal anno-
tation links such as comments, criticism, and
suggestions for revision. While revising the
document, the student could see all of the
instructor's comments and examine the
sources containing the counter-arguments.

Like most of the serious workers on
hypertext, the Intermedia team is espe-
cially concerned with providing the user
with ways of managing the increased com-
plexity of the hypertext environment. For
example, they contend that multiple links
emanating from the same point in a docu-
ment may confuse the reader. Their alter-
native is to have a single link icon in the
material (text or graphics) which can be
quickly queried via the mouse to show the
specific outgoing links, their names, and
their destination nodes. 15 They also pro-
pose a construct called a web to implement
context-dependent link display. Every link
belongs to one or more webs and is only
visible when one of those webs is active. To
view documents with the links that belong
to a particular web, a user opens a web and
then opens one or more of its documents.
Although other webs may also reference
the document, only the links which were
made in the current web are displayed. As
a 'result, the user does not have to sift
through the connections made in many
different contexts.

The Intermedia project is also studying
ways of providing an effective browser for
a network that can include hundreds or
even thousands of nodes. The Intermedia
browser has two kinds of displays: a global
map, which shows the entire hyperdocu-
ment and allows navigation within it; and
a local map, which presents a view cen-
tered on a single document and displaying
its links and nearest neighbors in the web.
In addition, a display can show nodes and
links at several levels of detail. For exam-

pIe, it can show whole documents and the
links between them, or each link and its
approximate location within its docu-
ments. (See Figure 8.)

The Intermedia project has a long his-
tory, many participants, and a serious
institutional commitment to long-term
objectives. It conducts creative hypertext
experiments and uses the classroom as a
proving ground. Although this project is
still in its early stages, we can expect it to
contribute significantly to the develop-
ment of effective cooperative work envi-
ronments based on hypertext.

Tektronix Neptune. Tektronix Neptune
is one hypertext system that has been par-
ticularly designed as an open, layered
architecture. 17 Neptune strongly separates
the front end, a Smalltalk-based user inter-
face, from the back end, a transaction-
based server called the Hypertext Abstract
Machine (HAM). The HAM is a generic
hypertext model which provides opera-
tions for creating, modifying, and access-
ing nodes and links. It maintains a
complete version history of each node in
the hyperdocument, and provides rapid
access to any version of a hyperdocument.
It provides distributed access over a com-
puter network, synchronization for mul-
tiuser access, a complex network
versioning scheme, and transaction-based
crash recover)'.

The interface layer provides several
browsers: A graph browser provides a pic-
torial view of a subgraph of nodes and
links; a document browser supports the
browsing of hierarchical structures of
nodes and links; and a node browser
accesses an individual node in a hyper-
document. Other browsers include attrib-
ute browsers, version browsers, node
differences bro wsers, and demon
browsers. (See Figure 9.)

In Neptune, each end of a link has an
offset within its node, whether that node
is textual or graphical. * The link attach-
ment may refer to a particular version of
a node, or it may refer to the current ver-
sion. The HAM provides two mechanisms
that are useful for building application
layers: Nodes and links may have an
unlimited number of attribute/value pairs;
and special high-speed predicates are
included for querying the values of these
pairs in the entire hyperdocument, allow-

'Unlikeinmosthypertextsystems,thedestinationend
of a Neptunelinkisan iconicpoint in the textof the
destination node rather than the whole node.

29

Neptune Documents: Graph Browser

Mu t me 10 conten

Multimedia content

r by er Inte ac

An

[KCBII6] Katz. R.H.• Chang. E. and Bhate!a. R. version modeling concepti for
computer-aided design databases. I'roc. ileM SICMOD"6,
(May 1986) 379-386.

The name hypertext Is actually a misnomer for many of
several systems,lndudlng Augment,)(anad~, N
Neptun~ and the Electronic Document Syste
contents of a node to text. In general the contents of a
can be arbitrary digital data whose Interpretation may In
or digitized speech.

[Mey1l6] Mevrowltz. N. Intermedla: The Architecture and Construction of an
Object-OrIented Hypermedia System and Applications Frameworll.
rroc. ileM OOl'SLiI"6, (Noy 1986) 186-201.

[Nellll~ Nelson. T.H. Literary Machines.
T.H. Nelson, swarthmore, PA., 1981.

[RMNlIlJ Robertson, G., McCracken, D. and Newell, A. The ZOG approach to
man-machine communication.'-----------------------1 International Journal of Man-Machine Studies, 14, 461-488, 1981.

Figure 9. Neptune browsers. Three browsers from Neptune are illustrated. A pictorial view of a network of nodes and links is
shown in the Graph Browser (the upper window). The lower right window and the lower pane of the Document Browser are
viewers for text nodes. Icons representing link attachments are shown embedded within the text in each of the nodes.

advantage of showing a natural hierarchy
of nodes: The windows of lower-level
nodes are nested directly within their par-
ents. In most hypertext systems, no
attempt is made to display the parent-child
relationship once the nodes are opened as
windows.

Pitman's CREF. The Cross-Referenced
Editing Facility (CREF) is a prototype of
a specialized text and graphics editor
which was developed originally as a tool
for use in analyzing the transcripts from
psychological experiments (known as pro-
tocols), but which was also used to inves-

September 1987

tigate more general hypertext design
issues.!" Much of the interactive feel of
CREF reflects the style of use and pro-
gramming of the Syrnbolics Lisp machine,
on which it was built. Chunks of text,
called segments, constitute the nodes in the
system. Segments are arranged in linear
series, and can have keywords and various
kinds of links to other segments. The
notion of a linear set of segments is natu-
ral to the protocol analysis problem, since
the first step with such protocols is to seg-
ment them into the episodes of the exper-
imental session.

CREF organizes segments into collec-

tions, which can be defined implicitly by
a predicate (called an abstract collection)
or explicitly by a list (called a static collec-
lion). At any time, the selected collection
appears as a continuous length of text with
the segment boundaries marked by named
horizontal lines (such as "Segment 1,"
"Segment 2," etc.). This view can be
edited as if it were a single document.

One way of forming an abstract collec-
tion is by selecting segments using a
boolean predicate over keywords. To
extend the power of this keyword facility.
CREF allows the user to define a type hier-
archy on the keywords. For example, if

31

a serial process and is, in any case, limited
by the bandwidth of human linguistic
processing. Spoken communication of
parallel themes must mark items with
stresses, pauses, and intonations which the
listener must remember as the speaker
develops other lines of argument. Graphi-
cal forms can use lists, figures, and tables
to present ideas in a less than strictly lin-
ear form. These visual props allow the
reader/viewer to monitor the items which
he must understand together. One of the
challenges of good writing, especially good
technical writing, is to present several par-
allellines of a story or an argument in a
way that weaves them together coherently.

Traditional flat text binds us to writing
and reading paragraphs in a mostly linear
succession. There are tricks for signalling
branching in the flow of thought when
necessary: Parenthetical comments, foot-
notes, intersectional references (such as
"see Chapter 4"), bibliographic refer-
ences, and sidebars all allow the author to
say' 'here is a related thought, in case you
are interested." There are also many rhe-
torical devices for indicating that ideas
belong together as a set but are being
presented in linear sequence. But these are
rough tools at best, and often do not pro-
vide the degree of precision or the speed
and convenience of access that we would
like.

Hypertext allows and even encourages
the writer to make such references, and
allows the readers to make their own deci-
sions about which links to follow and in
what order. In this sense, hypertext eases
the restrictions on the thinker and writer.
It does not force a strict decision about
whether any given idea is either within the
flow of a paper's stream of thought or out-
side of it. Hypertext also allows annota-
tions on a text to be saved separately from
the reference document, yet still be tightly
bound to the referent. In this sense, the
"linked-ness" of hypertext provides much
of its power: It is the machine processible
links which extend the text beyond the sin-
gle dimension of linear flow.

At the same time, some applications
demonstrate that the "node-ness" of
hypertext is also very powerful. Particu-
larly when hypertext is used as a thinking,
writing, or design tool, a natural cor-
respondence can emerge between the
objects in the world and the nodes in the
hypertext database. By taking advantage
of this object-oriented aspect, a hypertext
user can build flexible networks which
model his problem (or solution). In this
application the links are less important

September 1987

than the nodes. The links form the "glue"
that holds the nodes together, but the
emphasis is on the contents of the nodes.

From a computer science viewpoint, the
essence of hypertext is precisely that it is a
hybrid that cuts across traditional bound-
aries. Hypertext is a database method,
providing a novel way of directly access-
ing data. This method is quite different
from the traditional use of queries. At the
same time, hypertext is a representation
scheme, a kind of semantic network which
mixes informal textual material with more
formal and mechanized operation's and
processes. Finally, hypertext is an interface
modality that features "control buttons"
(link icons) which can be arbitrarily
embedded within the content material by
the user. These are not separate applica-
tions of hypertext: They are metaphors for
a functionality that is an essential union of
all three.

The power of linking. In the next two
sections of this article, I will explore links
and nodes in more detail as the basic build-
ing blocks of hypertext.

Linkfollowing. The most distinguishing
characteristic of hypertext is its machine
support for the tracing of references. But
what qualifies a particular reference-
tracing device as a link? How much effort
is permissible on the part of a user who is
attempting to trace a reference? The
accepted lower limit of referencing sup-
port can be specified as follows: To qualify
as hypertext, a system should require no
more than a couple of keystrokes (or
mouse movements) from the user to follow
a single link. In other words, the interface
must provide links which act like "magic
buttons" to transport the user quickly and
easily to a new place in the hyper-
document.

Another essential characteristic of
hypertext is the speed with which the sys-
tem responds to referencing requests. Only
the briefest delay should occur (one or two
seconds at most). Much design work goes
into this feature in most systems. One rea-
son for this concern is that the reader often
does not know if he wants to pursue a link
reference until he has had a cursory look
at the referenced node. If making this
judgement takes too long, the user may
become frustrated and not bother with the
hypertext links.

However, not all link traversals can be
instantaneous. Perhaps as important as
rapid response is providing cues to the user
about the possible delay that a given query
or traversal might entail. For example,
some visual feature of the link icon could
indicate whether the destination node is in
memory, on the disk, somewhere else on
the network, or archived off line.

Properties of links. Links can be used
for several functions. These include the
following:

• They can connect a document refer-
ence to the document itself.

• They can connect a comment or anno-
tation to the text about which it is written.

• They can provide organizational
information (for instance, establish the
relationship between two pieces of text or
between a table of contents entry and its
section).

• They can connect two successive
pieces of text, or a piece of text and all of
its immediate successors.

• They can connect entries in a table or
figure to longer descriptions, or to other
tables or figures.

Links can have names and types. They
can have a rich set of properties. Some sys-
tems allow the display of links to be turned
on and off (that is, removed from the dis-
play so that the document appears as ordi-
nary text).

The introduction of links into a text sys-
tem means that an additional set of
mechanisms must be added for creating
new links, deleting links, * changing link
names or attributes, listing links, etc.

Referential links. There are two
methods for explicitly linking two points
in hypertext-by reference and by organ-
ization. The reference method is a non hi-
erarchical method. It uses referential links
that connect points or regions in the text.

Referential links are the kind of link that
most clearly distinguishes hypertext. They
generally have two ends, and are usually
directed, although most systems support
"backward" movement along the link.
The origination of the link is called the
"link source," and usually acts as the
reference. The source can logically be
either a single point or a region of text. At
the other end, the "destination" of the link
usually functions as the referent, and can

'Link deletion is problematical. For example, what
should the policy be for nodes which are stranded
when all their links have been deleted? Should they be
placed in "node limbo" until the user decides what 10
do with them?

33

Asl dlksjdf dkf sl 4elsldfj aslkdfj
sljsad asdlkfj;l fjslkja a\;kjd jl
slkjv erwoiwnmm em, uink1l-_-~~_
Indm dsotuewr, djld' w, Y
kjdf d'\ owmd. On nv vn
sdlfkj xxxx jl dlew vio nvi
sve vkins ; vkluv cvoiew ,m k oi
ionolf f1kd.

SOY vi voinsek voierwd. vienm
aio vimns ivds li vinoern vi dinv
wor glkr lt l reiubc rcbier uvrcbx
rhkrkb "lkdslksd djnvuin" dfoi
sew cv ebnwe iubvi cvubw viu
iuhsdibn denewin niouc dsiub d
indsi iousk dk ds iuwi. _- •..••••.•"----------- ••••.•

A

B
Bgh sdkj dlkjs kewoj vodiu od soi
slke id sdoi aionsl dsiunfl soi dis oi
s soijsdi sdoijsd oids dios oi dsoi
sdoi sdois sdoids dsoijsd doi dsoids
s II oiosdj ewos sdoie dioiewnzxon
osidoiw soidn.

Ywe we d eoid soinvcoiz zxoid di
sdoia asoinv aoidsna oianaois dnoi
soandoia a aoinds said aid odno
soia aoidnaoinao 0 oisdo dcloind
aoinal.

Figure 10. An example of a link with a point source and a region destination. The
source of the link is a token in the text of document A which contains a textual
identifier ("xxxx"). The identifier may be (1) the name of the destination node (in
this case it would be "B"), (2) the name of the link, or (3) an arbitrary string which
is neither the name of the link nor the destination node. The destination of this link
is node B which is a region. The link has an internal name (5327) which is normally
visible to the user.

also be either a point or a region. (See Fig-
ure 10.)

A link point is some icon indicating the
presence of the link. It usually shows the
link's name and perhaps also its type. Or
it may show the name and/or type of the
destination node. In systems such as Nep-
tune which support links with both point
source and point destination, the icon also
indicates which type of link is indicated. In
some systems, the display of links can be
suppressed, so that the documents appear
linear.

A link region is a set of contiguous
characters which is displayed as a single
unit. In Figure 10, the link destination is
a link region, namely, an entire node. Fig-

34

ure 10 illustrates the most common form
of hypertext link, in which the source is a
point and the destination is a region. This
example typifies many of the link applica-
tions listed above, because it shows how a
chunk of text-a region-is written about
or referenced by some smaller chunk of
text, often a sentence. Since most readers
are accustomed to single point references
to sentences (i.e., footnotes), they have no
problem accepting a link with a point
source. There can be regions in graphics as
well-either bordered regions or collec-
tions of graphic objects in a figure.

Link regions can pose difficult design
problems. They are easiest to implement
as whole nodes, since setting a region off

from its neighboring material within the
same node raises a tough implementation
issue-how to display the selected region
to the user. It must be highlighted some-
how, using reverse video, fonts, or color,
but each of these options poses difficulties
in keeping overlapping regions clearly
highlighted. The Intermedia designers pro-
pose to draw a light box around regions
and a darker box around region/region
overlaps, thus showing a single level of
ovcrlapping'<; however, this technique is
not effective if there are more than two
overlapping regions.

Another difficulty posed by link regions
is how to show the name ofthe link. Unlike
a link point, a link region has no obvious
position for a title, unless it is placed
arbitrarily at the beginning or end of the
region.

Link regions can also be difficult to
manipulate. Designers must devise a sys-
tem for copying, moving, modifying, and
deleting the region and the substrings
within it. The movement of regions
involves logistical dilemmas which are not
easy to resolve: For example, when one
moves a major portion of the text in a des-
tination region to someplace else in the
node, should the link destination move
with it or stay with what remains? Also,
designers must make special provisions for
deleting, moving, or copying the defining
end points of a region.

Organizational links. Like reference
links, organizational links establish
explicit links between points in hypertext.
Organizational links differ from referen-
tiallinks in that they implement hierarchi-
cal information.

Organizational links connect a parent
node with its children and thus form a
strict tree subgraph within the hypertext
network graph. They correspond to the [S-
A (or superconcept) links of semantic net
theory, and thus operate quite differently
than referential links. * For example,
rather than appearing as explicit high-
lighted tokens in each node, organiza-
tional links are often traversed by a
separate mechanism at the node control
level (i.e., special go to-parent , goto-first-
child, and goto-next-sibling commands).
In other cases, there are organizational
nodes (such as toc nodes in Tcxtnet and
File Boxes in NoteCards) which record the
organizational structure.

*Note that organizational links are distinct from the
class hierarchy links that would be used (in the object-
oriented programming paradigm) to define types and
subtypes of nodes in the hypertext system.

COMPUTER

Keyword links. In addition to the
explicit linking performed by referential
and organizational links, there is a kind of
implicit linking that occurs through the use
of keywords. This type of linking is yet to
be fully explored.

One of the chief advantages of text stor-
age on a computer is the ability to search
large and complex documents and sets of
documents for substrings and key-
words. * Naturally, this ability is also a
valuable aspect of hypertext. Indeed, most
users of large hyperdocuments insist on
having some mechanism for scanning their
content, either for selected keywords
(which can apply to nodes, links, or
regions) or for arbitrary embedded strings.

From a functional standpoint, link fol-
lowing and search are similar: Each is a
way to access destination nodes that are of
possible interest. Link following usually
yields a single node, whereas search can
yield many; hence, a keyword is a kind of
implicit computed link. The value of this
insight is that it may allow design of a
hypertext interface which is consistent
across all link-tracing activities.

To tree or not to tree. Some hypertext
systems (for example, Emacs INFO) sup-
port only hierarchical structures, others
(such as Xanadu and Hyperties) provide
no specific support for hierarchical struc-
tures, and others (such as Textnet and
NoteCards) support both kinds of
structures.

One could question just how sufficient
strictly hierarchical structures are, and for
which applications they are sufficient and
for which they are not. On the one hand,
abstraction is a fundamental cognitive
process, and hierarchical structures are the
most natural structures for organizing
levels of abstraction. On the other hand,
cases obviously exist where cross-
hierarchical links are required. Frank
Halasz, one of the developers of
NoteCards, has gathered statistics on the
hyperspace of a single representative
NoteCards user; this person had 1577
nodes (cards) in all, 502of which wereFile-
Boxes (hierarchical nodes). Connecting
these nodes were a total of 3460links, 2521

"There is some controversy over the relative merits of
keyword retrieval as onnoseno full text search. On the
one hand. keyword retrieval is only asgood as the skill
and thoroughness of the person selecting the key-
words. On the other hand, full text search does not
find all the relevant documents, nor does it always find
only the relevant documents. Its shortcomings are due
in part to the commonness of synonyms in English. In
addition, full text search can be computationally pro-
hibitive in large networks.

September 1987

(73percent) of which connected FileBoxes
to each other or to individual notecards,
261 (7.5 percent) of which were nonhier-
archical referential links, and the
remainder of which were mail links (used
by the system to tie mail messages to other
nodes). This example, for what it is worth,
suggests that hierarchical structure is very
important in organizing a hypertext net-
work, and that referential links are impor-
tant but less common.

One advantage of a strictly tree-oriented
system is that the command language for
navigation is very simple: From any node,
the most one can do is go to the parent, a
sibling, or a child. This simplicity also
diminishes the disorientation problem,
since a simpler cognitive model of the
information space will suffice.

Of course, the great disadvantage of any
hierarchy is that its structure is a function
of the few specific criteria that were used
in creating it. For example, if one wishes
to investigate what sea-based life forms
have in common with land-based life
forms, one may find that the traditional
classification of life forms into the plant
and animal kingdoms breaks up the infor-
mation in the wrong way. The creator of
a hierarchical organization must anticipate
the most important criteria for later access
to the information. One solution to this
dilemma is to allow the information ele-
ments to be structured into multiple hier-
archies, thus allowing the world to be
"sliced up" into several orthogonal
decompositions. Any hypertext system
which has hierarchy nodes, such as Text-
net (toe nodes) and NoteCards (FileBox
nodes), can perform this operation quite
easily. These are the only systems which
explicitly claim to support multiple hierar-
chies. Indeed, one early user of NoteCards
used the system in doing the research and
writing for a major project paper; he
imposed one organization on the data and
his writings while doing the research, and
then quite a different (yet coexistent)
organization on the same material to pro-
duce his paper. As a generalization, it
seems that engineering-oriented hypertext
users prefer hierarchical organizations,
whereas arts- or humanities-oriented users
prefer cross-referencing organizations.

Extensions to basic links. Certain fea-
tures of the link enable it to be extended in

several ways. Links can connect more than
two nodes to form cluster links. Such clus-
ter links can be useful for referring to
several annotations with a single link, and
for providing specialized organizational
structures among nodes. Indeed, the toe
nodes of Textnet and the FileBoxes of
NoteCards are both forms of cluster links.

One useful way to extend the basic link
is to place attribute/value pairs on links
and to query the network for them. The
Neptune system, for example, has an
architecture that is optimized for this func-
tion. Coupled with specialized routines in
the database interpreter (the HAM), these
attribute lists allow users to customize
links in several ways, including devising
their own type system for links and per-
forming high-speed queries on the types.

It is also possible to perform procedural
attachments on a link so that traversing the
link also performs some user-specified side
effect, such as customizing the appearance
of the destination node. This ability is
provided in Neptune and Boxer.

Hypertext nodes. Although the essence
of hypertext is its machine-supported link-
ing, the nodes contribute significantly to
defining the operations that a hypertext
system can perform. Most users of hyper-
text favor using nodes which express a sin-
gle concept or idea, and are thus much
smaller than traditional files. When nodes
are used in this fashion, hypertext
introduces an intermediate level of
machine support between characters and
files, a level which has the vaguely seman-
tic aspect of being oriented to the expres-
sion of ideas. But this sizing is completely
at the discretion of the hypertext writer,
and the process of determining how to
modularize a document into nodes is an
art, because its impact on the reader is not
well understood."

The modularization of ideas. Hypertext
invites the writer to modularize ideas into
units in a way that allows (1) an individual
idea to be referenced elsewhere, and (2)
alternative successors of a unit to be
offered to the reader (for instance, more
detail, an example, bibliographic refer-
ences, or the logical successor). But the
writer must also reckon with the fact that
a hypertext node, unlike a textual para-
graph, tends to be a strict unit which does
not blend seamlessly with its neighbors.
Some hypertext systems (Notecards,
CREF, Boxer, FRES, NLS) allow nodes to
be viewed together as if they were one big
node, and this option is essential for some

35

applications (for example, wntmg and
reading prose). But the boundaries around
nodes are always discrete and require
sometimes difficult judgements about how
to cleave the subject matter into suitable
chunks.

The process of identifying a semanti-
cally based unit, such as an idea or con-
cept, with a syntactic unit, such as a
paragraph or hypertext node, is not unique
to hypertext. Manuals of style notwith-
standing, traditional text has rather loose
conventions for modularizing text into
paragraphs. This looseness is acceptable
because paragraph boundaries have a rela-
tively minor effect on the flow of the read-
ing. Paragraph boundaries are sometimes
provided just to break up the text and give
the eye a reference point. Thus, decisions
about the distribution of sentences among
paragraphs is not always critical.

Hypertext, on the other hand, can
enforce a rather stern information hiding.
In some systems, the only clue a user has
as to the contents of a destination node is
the name of the link (or the name of the
node, if that is provided instead). The
writer is no longer making all the decisions
about the flow of the text. The reader can
and must constantly decide which links to
pursue. In this sense, hypertext imposes on
both the writer and the reader the need for
more process awareness, since either one
has the option of branching in the flow of
the text. Thus hypertext is best suited for
applications which require these kinds of
judgements anyway, and hypertext merely
offers a way to act directly on these judge-
ments and see the results quickly and
graphically.

Ideas as objects. While difficult to docu-
ment, there is something very compelling
about reifying the expression of ideas into
discrete objects to be linked, moved, and
changed as independent entities. Alan Kay
and Adele Goldberg+' observed of
Smalltalk that it is able to give objects a
perceptual dimension by allocating to
them a rectangular piece of screen real
estate. This feature offers enhanced
retrieval and recognition over computer-
processed flat documents, because to a
much greater degree abstract objects are
directly associated with perceptual
objects-the windows and icons on the
screen.

Paragraphs, sections, and chapters in a
book, viewed through a standard text edi-
tor or word processor, don't stand out as
first-class entities. This is particularly
apparent when one canview one's docu-

36

ment hierarchically (i.e., as an outline) at
the same time that one adds new sections
and embellishes existing ones. People
don't think in terms of "screenfulls"; they
think in terms of ideas, facts, and evi-
dence. Hypertext, via the notion of nodes
as individual expressions of ideas, provides
a vehicle which respects this way of think-
ing and working.

Typed nodes. Some hypertext systems
sort nodes into different types. These
typed nodes can be extremely useful, par-
ticularly if one is considering giving them
some internal structure, since the types can
be used to differentiate the various struc-
tural forms.

For example, in our research in the
MCC Software Technology Program, we
have been implementing a hypertext inter-
face for a design environment called the
Design Journal. The Design Journal is
intended to provide an active scratch pad
in which the designer can deliberate about
design decisions and rationale, both
individually and in on-line design meet-
ings, and in which he can integrate the
design itself with this less formal kind of
information. For this purpose we have
provided a set of four typed nodes for the
designer to use-notes, goals/constraints,
artifacts, and decisions. Notes are used for
everything from reminders, such as "Ask
Bill for advice on Module X," to specific
problems and ideas relating to the design.
Goals/ constraints are for the initial
requirements as well as discovered con-
straints within the design. Artifacts are for
the elements of the output: The Design.
And decisions are for capturing the branch
points in the design process, the alterna-
tives considered by the designer, and some
of the rationale for any commitment (how-
ever tentative) that has been made. The
designer captures assumptions in the form
of decisions with only one alternative. Our
prototype of the Design Journal uses color
to distinguish between note types in the
browser, and we have found this to be a
very effective interface.

Hypertext systems that use typed nodes
generally provide a specialized color, size,
or iconic form for each node type. The dis-
tinguishing features help the user di fferen-
tiate at a glance the broad classes of typed
nodes that he is working with. Systems
such as NoteCards, Intermedia, and IBIS
make extensive use of typed nodes.

Semistructured Nodes. So far I have
spoken of the hypertext node as a struc-
tureless "blank slate" into which one
might put a word or a whole document.
For some applications, there is growing
interest in semistructured nodes-typed
nodes which contain labelled fields and
spaces for field values. The purpose of
providing a template for node contents is
to assist the user in being complete and to
assist the computer in processing the
nodes. The less that the content of a node
is undifferentiated natural language (for
example, English) text, the more likely that
the computer can do some kinds of limited
processing and inference on the textual
subchunks, This notion is closely related
to Malone's notion of semistructured
information systems."

To continue with the example of the
Design Journal, we have developed a
model for the internal structure of deci-
sions. The model is named ISAAC. It
assumes that there are four major compo-
nents to a design decision:

(I) an issue, including a short name
for the issue and a short paragraph
describing it in general terms;
(2) a set of alternatives, each of which
resolves the issue in a different way,
each having a name and short
description, and each potentially
linked to the design documents or ele-
ments that implement the alternative;
(3) an analysis of the competing alter-
natives, including the specific criteria
being used to evaluate them, the
trade-off analysis among these alter-
natives, and links to any data that the
analysis draws upon; and
(4) a commitment to one of the alter-
natives (however tentatively) or to a
vector of preferences over the alter-
natives, and a subjective rating about
the correctness or confidence of this
commitment.

Without getting into the details of the
underlying theory, I merely wish to stress
here that the internal structure of ISAAC
suggests that the author of an ISAAC deci-
sion is engaged in a much more structured
activity than just' 'writing down the deci-
sion," and the reader is likewise guided by
the regularity of the ISAAC structure.

Of course, it may not be clear why we do
not treat each of the elements listed above
as its own typed hypertext node. The rea-
son is that the parts of an ISAAC frame
are much more tightly bound together
than ISAAC frames are bound to each
other. For example, we could not have an

COMPUTER

analysis part without an alternatives part;
yet if we treat them as separate hypertext
nodes, we have failed to build this con-
straint into the structure. The general issue
here is that some information elements
must always occur together, while others
may occur together or not, depending on
how related they are in a given context and
how important it is to present them as a
cluster distinct from "surrounding" infor-
mation elements. This problem is recur-
sive; An element that is atomic at one level
may turn out on closer inspection to con-
tain many components, some of which are
clustered together.

In hypertext this tension presents itself
as the twin notions of semistructured
nodes and composite nodes.

Composite nodes. Another mechanism
for aggregating related information in
hypertext is the composite node. Several
related hypertext nodes are "glued"
together and the collection is treated as a
single node, with its own name, types, ver-
sions, etc. Composite nodes are most use-
ful for situations in which the separate
items in a bulleted list or the entries in a
table are distinct nodes but also cohere into
a higher level structure (such as the list or
table). This practice can, however, under-
mine the fundamental association of one
interface object (window) per database
object (node), and thus must be managed
well to avoid complicating the hypertext
idiom unduly.

A composite node facility allows a
group of nodes to be treated as a single
node. The composite node can be moved
and resized, and closes up to a suitable icon
reflecting its contents. The subnodes are
separable and rearrangeable through a
subedit mode. The most flexible means of
displaying a composite node is to use a
constraint language (such as that devel-
oped by Symbolics for Constraint Frames)
which describes the sub nodes as panes in
the composite node window and speci fies
the interpane relationships as dynamic
constraints on size and configuration.

Composite nodes can be an effective
means of managing the problem of having
a large number of named objects in one's
environment. Pitman described the prob-
lem this way:

In this sort of system, there is a never-ending
tension between trying to name everyttung (in
which case, the number of named things can
grow quickly and the set can become quickly
unmanageable) or to name as little as possi-
ble (in which case, things that took a lot of
trouble to construct can be hard to retrieve
if one accidentally drops the pointers to
them)."

September 1987

One problem with composite nodes is
that as the member nodes grow and change
the aggregation can become misleading or
incorrect. A user who encounters this
problem is in the same predicament as a
writer who has rewritten a section of a
paper so thoroughly that the section title
is no longer accurate. This "semantic
drift" can be difficult to catch.

Analogy to semantic networks. The idea
of building a directed graph of informal
textual elements is similar to the AI con-
cept of semantic networks. A semantic
network is a knowledge representation
scheme consisting of a directed graph in
which concepts are represented as nodes,
and the relationships between concepts are
represented as the links between them.
What distinguishes a semantic network as
an AI representation scheme is that con-
cepts in the representation are indexed by
their semantic content rather than by some
arbitrary (for example, alphabetical)
ordering. One benefit of semantic net-
works is that they are natural to use, since
related concepts tend to cluster together in
the network. Similarly, an incompletely or
inconsistently defined concept is easy to
spot since a meaningful context is provided
by those neighboring concepts to which it
is already linked.

The analogy to hypertext is straightfor-
ward: Hypertext nodes can be thought of
as representing single concepts or ideas,
internode links as representing the seman-
tic interdependencies among these ideas,
and the process of building a hypertext net-
work as a kind of informal knowledge
engineering. The difference is that AI
knowledge engineers are usually striving to
build representations which can be
mechanically interpreted, whereas the goal
of the hypertext writer is often to capture
an interwoven collection of ideas without
regard to their machine interpretability.
The work on semantic networks also sug-
gests some natural extensions to hypertext,
such as typed nodes, semistructured nodes
(frames), and inheritance hierarchies of
node and link types.

The advantages and
uses of hypertext

Intertextual references are not new. The

importance of hypertext is simply that
references are machine-supported. Like
hypertext, traditional literature is richly
interlinked and is hierarchically organized.
In traditional literature, the medium of
print for the most part restricts the flow of
reading to follow the flow of linearly
arranged passages. However, the process
of following side links is fundamental even
in the medium of print. In fact, library and
information science consist principally of
the investigation of side links. Anyone
who has done research knows that a con-
siderable portion of that effort lies in
obtaining referenced works, looking up
cross-references, looking up terms in a dic-
tionary or glossary, checking tables and
figures, and making notes on notecards.
Even in simple reading one is constantly
negotiating references to other chapters or
sections (via the table of contents or refer-
ences embedded in the text), index entries,
footnotes, bibliographic references, side-
bars, figures, and tables. Often a text
invites the reader to skip a section if he is
not interested in greater technical detail.

But there are problems with the tradi-
tional methods.

• Most references can't be traced back-
wards: A reader can not easily find where
a specific book or article is referenced in
a document, nor can the author of a paper
find out who has referenced the paper.

• As the reader winds his way down var-
ious reference trails, he must keep track of
which documents he has visited and which
he is done with.

• The reader must squeeze annotations
into the margins or place them in a sepa-
rate document.

• Finally, following a referential trail
among paper documents requires substan-
tial physical effort and delays, even if the
reader is working at a well-stocked library.
If the documents are on line, the job iseas-
ier and faster, but no less tedious.

New possibilities for authoring and design.
Hypertext may offer new ways for authors
and designers to work. Authoring is
usually viewed as a word- and sentence-
level activity. Clearly the word processor *
'Actually, the term "word processor" is quite mis-
leading. Most such tools accept input only at the
character level, and manipulate characters, words,
semences, and parllsraphs with equal facility. So these

tools manipulate units of text, not words. But do they
"process" these units? "Processing" implies that the
computer performs some additional work, such as
changing the verb form if the subject was changed
from singular to plural, or performing real-rime spell-
ing and grammar correction. Since this is not the case,
we really should return to the original term for these
1001s: "text editors".

37

File Edit Ulew font Rrrnngement Rlign Ooto

IIsh/ConteHt32.304.1BO: Global Map

(ustcmtze

Figure 11. Tangled web of links. This experimental implementation of a global map in the Interrnedia system shows the diffi-
culty of providing users with spatial cues once a linked corpus contains more than a few dozen documents. This global map
only represents about one tenth of the documents in a corpus designed for a survey of English literature course.

properties useful in visual differentiation
(color, size, shape, texture), and maintain-
ing certain similarities to our physical envi-
ronment (for example, no two objects
occupy the same space, things only move
if moved, etc.), browser designers are able
to create quite viable virtual spatial envi-
ronments. Users orient themselves by vis-
ual cues, just as when they are walking or
driving through a familiar city. However,
there is no natU'ral topology for an infor-
mation space, except perhaps that higher
level concepts go at the top or on the left
side, so until one is familiar with a given

September 1987

large hyperdocument, one is by definition
disoriented. In addition, an adequate vir-
tuality is very difficult to maintain for a
large or complex hypertext network. Such
parameters as (1) large numbers of nodes,
(2) large numbers of links, (3) frequent
changes in the network, (4) slow or awk-
ward response to user control inputs, (5)
insufficient visual differentiation among
nodes and/or links, and (6) non visually
oriented users combine to make it practi-
cally impossible to abolish the disorienta-
tion problem with a browser alone.

One solution to this dilemma is to apply

standard database search and query tech-
niques to locating the node or nodes which
the user is seeking. This is usually done by
using boolean operations to apply some
combination of keyword search, full string
search, and logical predicates on other
attributes (such as author, time of crea-
tion, type, etc.) of nodes or links. Simi-
larly, one can filter (or el/ide) information
so that the user is presented with a manage-
able level of complexity and detail, and can
shift the view or the detail suppression
while navigating through the network.
However, much research remains to be

39

Intellect," in Vistas in Information Han-
dling, vol. I, Spartan Books, London,
1963.

4. D.C. Engelbart and W.K. English, "A
Research Center for Augmenting Human
Intellect," AFlPS Conf. Proc., vol. 33,
Pari I, The Thompson Book Company,
Washington, D.C., 1968.

5. T.H. Nelson, "Replacing the Printed
Word: A Complete Literary System, " IFIP
Proc., October 1980, pp. 1013-1023.

6. R.H. Trigg, A Network-basedApproach to
Text Handling for the Online Scientific
Community, PhD. Thesis, University of
Maryland, 1983.

7. H. Rittel and M. Webber, "Dilemmas in a
General Theory of Planning," Policy
Sciences, Yol. 4,1973.

8. D.G. Lowe, "Cooperative Structuring of
Information: The Representation of
Reasoning and Debate," in Int'l. 1. of Man-
Machine Studies," Yol. 23, 1985, pp.
97-111.

9. 1.B Smith et ai, "WE: A Writing Environ-
ment for Professionals," Technical Report
86-025, Department of Computer Science,
University of North Carolina at Chapel
Hill, August 1986.

10. W. Hershey, "Idea Processors," BYTE,
June 1985, p. 337.

II. D. McCracken and R.M. Akscyn, "Expe-
rience with the ZOG Human-computer
Interface System," Int'l J. of Man-Machine
Studies, Yol. 21,1984, pp. 293-310.

12. B. Sbneiderman and J. Morariu, "The
Interactive Ency-clopedia System (TIES),"
Department of Computer Science, Univer-
sity of Maryland, College Park, MD 20742,
June 1986.

13. J.H. Walker, "The Document Examiner,"
SIGCRAPH VideoReview, Edited Compi-
lation from CH1'85: Human Factors in
Computing System, 1985.

14. F.G. Halasz, T.P. Moran,andT.H. Trigg,
"NoteCards in a Nutshell," Proc. of the
ACM Conf on Human FactorsinComput-
ingSystems, Toronto, Canada, April 1987.

15. N.L. Garrett, K.E. Smith, and N. Mey-
rowhz, "Intermedia: Issues, Strategies, and
Tactics in the Design of a Hypermedia
Document System," in Proc. Conf. on
Computer-Supported Cooperative Work,
MCC Software Technology Program, Aus-
tin, Texas, 1986.

16. N. Yankelovich, N. Meyrowitz, and A. van
Dam, "Reading and Writing the Elec-
tronic Book," Computer, October 1985.

17. N. Delisle and M. Schwartz, "Neptune: A
Hypertext System for CAD Applications,"
Proc. of ACM SIGMOD Int'l Conf. on
Management of Data, Washington, D.C.,
May 28-30, 1986, pp. 132-143. (Also avail-
able as SIGMOD Record Yol. 15, No.2,
June 1986).

18. A. diSessa, "A Principled Design for an
Integrated Computational Environment, "
Human-Computer Interaction, Vol. I,
Lawrence Erlbaum, 1985, pp. 1-47.

19. K.M.Pitman, "CREf: An Editing facility
for Managing Structured Text," A.I.
Memo No. 829, M.I.T. A.I. Laboratory,
Cambridge, Mass., February 1985.

September 1987

20. P.J. Brown, "Interactive Documentation,"
in Software: Practice and Experi-
ence, March 1986, pp. 291-299.

21. D. Shasha, "When Does Non-Linear Text
Help? Expert Database Systems, Proc. of
the Firs! Int'! Conf., April 1986, pp.
109-121.

22. A. Kay and A. Goldberg, "Personal
Dynamic Media," Computer, March 1977,
pp.31-41.

23. T.W. Malone et al, "Intelligent
Information-Sharing Systems," Communi-
cations of the ACM, May 1987, pp.
390-402.

24. W .Gibson, Neuromancer, Ace Science Fic-
tion, 1984.

A more detailed version of this article,
including an extended bibliography, is avail-
able from the author. To obtain a copy, cir-
cle number 181 on the Reader Service Card
at the back of the magazine.

E. Jeffrey Conklin is a member of the research
staff and GE's liaison to the Software Technol-
ogy Program in the Microelectronics and Com-
puter Technology Corporation (MCC). His
research centers on constructing information
systems for the capture and use of design
rationale.

Conklin Received his BA from Antioch Col-
lege and his MS and PhD from the University
of Massachusetts at Amherst.

Readers may write to Conklin at MCC Soft-
ware Technology Program, P.O. Box 200195,
Austin, TX 78720; (512) 343-0978.

Copyright © 1987 The Institute of Electrical and Electronics Engineers, Inc.
Reprinted with permission from COMPUTER,

10662 Los Vaqueros Circle, Los Alamitos, CA 90720

